Manufacturing Process of Rosin, Terpene, Tall Oil, Resin & Dimer Acids

(Oleoresin and Pine Chemicals)

Terpenoids, Turpentine, Terpene based Adhesives, Peroxides from Turpentine, Terpene Resins, Terpene Derivatives
Introduction

One of the oldest segments of the chemical industry, pine chemicals are a family of renewable, naturally occurring materials derived from the pine tree (genus Pinus). Pine trees originate from the northern hemisphere but are now found worldwide.

Pine chemicals are derived from the distillation of oleoresin or carbonization of wood. These chemicals are largely obtained from three sources: 1) living trees; 2) dead pine stumps and logs; and 3) as by-products of sulfate (or Kraft) pulping. Most distilled products are made from gum, stumps, logs, and sulfate pulp byproducts.
The pine tree, utilized through the centuries as a valuable natural resource, has many applications in our society. In early civilizations the pine tree was used as fuel and shelter. As societies developed, the pitch (or sap) from the tree found use in caulking seams between the boards of sailing ships and pine lumber could be used for building materials, paper, board and tissue. Pine Chemicals are environmentally friendly products that use natural, renewable resources as primary raw materials originating from sustainable forestry sources. For many years the pine chemicals industry has supplied bio renewable feed stocks to the $130 billion dollar coatings industry. These products include tall oil fatty acids (TOFA) and tall oil rosin sourced from pine trees, making them renewable and sustainable solutions.
The largest producer of pine chemicals:

- 9 Greatest Crude Tall Oil distillation capacity in the world, 800,000 tons/year, 50% of total capacity
- 9 Largest integrated producer of resins from pine chemicals

Pine oleoresin is a complex mixture of volatile and nonvolatile terpenes. Terpenes constitute the largest group of secondary products (with more than 40,000 different metabolites). Global investments in new forest plantations have focused on fast-growing hardwood plantations over the past 15 years. But there is a growing interest in developing new pine plantations for production of oleoresin.
Turpentine is the volatile oil distilled from pine resin, which itself is obtained by tapping trees of the genus Pinus. The solid material left behind after distillation is known as rosin. Both products are used in a wide variety of applications. Turpentine, rosin and derivatives of these which have been obtained via tapping of living pine trees (whether natural stands or plantations) are known collectively as gum naval stores (and the turpentine and rosin as gum turpentine and gum rosin, respectively). This distinguishes them from turpentine and rosin which have been recovered as by-products from chemical pulping of pines and which are referred to as sulphate naval stores; and wood naval stores, which are similar materials obtained from aged pine stumps.
Dimer acids, or dimerized fatty acids, are dicarboxylic acids prepared by dimerizing unsaturated fatty acids obtained from tall oil, usually on clay catalysts. Dimer acids are used primarily for synthesis of polyamide resins and polyamide hot melt adhesives. They are also used in alkyd resins, adhesives, surfactants, as fuel oil additives, lubricants, etc. It is a light yellow or yellow viscous transparent liquid. It is non-toxic.

The pine-derived chemicals market is projected to reach USD 5.27 Billion by 2021, at a CAGR of 4.5% from 2016 to 2021.
Some of the fundamentals are pine oleoresin extraction methods, occurrence, formation and exudation of oleoresin in pines, processing of oleoresin, rosin derivatives and its potential, new developments in rosin ester and dimer chemistry, terpene based adhesives, effect of solvent, ozone concentration and temperature on yields were investigated, sylvestrene and some of its derivatives, homopolymers and copolymers of acrylates, polymers and copolymers of vinyl pinolate, base catalysed isomerisations of terpenes, components of pine roots, insecticides based on turpentine, the general characteristics of dimer acids, structure and properties of dimer acids etc.
The present book has been published having in views the important uses of pines. The book contains manufacturing process of different products extracted from pines like oleoresin, rosin, turpentine derivatives, tall oil, resins and dimer acids etc. This is the first book of its kind which is very resourceful for all from researchers to professionals.
Table of Contents

1. **PINUS**
 - Introduction
 - Distribution
 - Distribution in India
 - Morphology
 - Key to the Identification of Indian Species
 - Anatomy
 - Root
 - Root-Stem Transition
 - Shoot Apex
 - Stem
 - Leaf
 - Embryology
 - Male Cones
 - Female Cones
 - Pollination
 - Receptive Spot
 - Fertilization
Embryogeny
Seed Coat
Wing
Germination
Cytology
Seed Testing
Seed Production and Dormancy
Breeding
Diseases
Mycorrhiza
Pests

2. PINE OLEORESIN EXTRACTION METHODS
Introduction
Cup the Larger-Diameter Trees for Increased Yields and Greater Profits
Double-Facing
Gum Yield from Shoulders
Use Correct Tin Lengths
First-Year Installation of Spiral Gutters with Double-Headed Nails
Shaving the Bark
Attach the Apron First
Attaching the Spiral Gutter
Completed Installation
Use of the Advanced Streak
Turpentine and Growth
Bark Chipping
Mounting and Sharpening the Bark Hack
Treating the Streak
Acid Penetration Above the Streak
Wounding the Tree for Gum Production
Metal Cups, Acid Corrosion and Gum Grades
Raising Tins Installed with Double-Headed Nails
Bark Pulling and Acid Treatment
How to Use the Spray-Puller
Acid Paste Method
Applying the Paste
Chipping and Paste Treatment

www.entrepreneurindia.co
3. PINES FOR THEIR OLEORESIN
Occurrence, Formation and Exudation of Oleoresin in Pines
Oleoresin Tapping
French Methods
Spanish Method
Greek Method
Indian Method
Mexican Method
American Bark-Chipping Method
The Austrian and German Herringbone" Methods
Russian Methods
Methods in Other Countries
Felled Pine Wood as Source of Rosin and Turpentine Composition of Oleoresin
Summary

4. PROCESSING OF OLEORESIN
Processing of Oleoresin
Olustee Gum Cleaning Process
Recovery of Turpentine and Rosin
Stripping Column
Multiple Tube Column
Luwa Columns
Fractionation of Turpentine
Batch Operation
Semi-Continuous Operation
Continuous Operation
Column Packings
Isomerisation of i-Pinene
Camphene Via Bornyl Chloride
Catalytic Isomerisation of i-pinene
Reaction Mechanism
Design Aspect of an Isomerisation Reactor
Liquid Phase
Vapor Phase

5. ROSIN DERIVATIVES AND ITS POTENTIAL

6. HYDROGENLESS HYDROGENATION OF RESIN ACIDS
Experimental
Results and Discussion
Transfer Hydrogenation of Isopimaric/Pimaric Acids
Transfer Hydrogenation of Abietic Acids
Reaction Mechanism

7. NEW DEVELOPMENTS IN ROSIN ESTER AND DIMER CHEMISTRY
New Rosin Esters
Chemistry of Rosin Dimers
8. TERPENE RESINS
Physical Properties
Chemical Properties
Manufacture
Uses

9. TERPENE BASED ADHESIVES
Introduction
Chemistry
Beta-Pinene Resins
Initiation
Propagation
Termination
Dipentene Resins
Alpha-Pinene Resins
Physical Characteristics of Resins
Pressure Sensitive Adhesives
Hot Melt Adhesives
Analytical Methods
Commercial Resins and Their Uses
Commercial Production
Applications in Pressure Sensitive Adhesives
Applications in Hot Melt Adhesives

10. OZONOLYSIS OF ALPHA-PINENE
Effect of Solvent, Ozone Concentration and Temperature on Yields were Investigated
Experimental Conditions are Discussed

11. β-BROMOLONGIFOLENE
Steam Distilled Products
Residue
Chromic Acid Oxidation of Dilongifolenyl Ether
Lead Tetraacetate Oxidation of Longifolene

12. PEROXIDES FROM TURPENTINE
Peroxide Number and Degree of Unsaturation are Tests of Product Quality
Catalytic Hydrogenation of Pinene to Pinane is First Step in Hydroperoxide Production
Small and Large Scale Techniques of Pinane Oxidation are Investigated
Cold-Rubber Polymerization
Decomposition of Pinane Hydroperoxide
Over-all Yield of 85% is Realized in Production of High Purity
Hydroperoxide
Peroxidation
Stripping of Oxidates
Polymerization
Heavy Metal Salts Accelerate Decomposition of Pinane Hydroperoxide
Decomposition
Summary

13. PINONIC ACID
Ozonolysis of \(\xi \)-Pinene in Acetic Acid Solution Proved Best Method
Yields were Determined by Partition Chromatography
Ozone Source
Reagents
Ozonization
Calculations and Analyses
Direct Ozonolysis was not Successful
Ozonization in Methanol
Ozonization and Decomposition in Aqueous Acetic Acid at Room Temperature
Ozonization in Aqueous Acetic Acid at 0Â°C. Decomposition in the Presence of Oxidants
Ozonization in Nitromethane

14. SYLVESTRENE AND SOME OF ITS DERIVATIVES
Sylvestrene
Sylvestrene Nitrosochloride
Sylvestrene Oxide
m-Terpineols
Sylvedihydrocarvone

15. 8-ACETOXYCARVOTANACETONE
16. RECOVERY OF 3-CARENE FROM CHINESE TURPENTINE AND SYNTHESIS OF ACETYLCARENES

Introduction
Distillation of Wood and Sulfate Turpentines
Material and Methods
Distillation Results
Synthesis of Acetyl-Carene
Materials and Methods
Results and Discussion
Synthesis Products

17. HOMOPOLYMERS AND COPOLYMERS OF ACRYLATES

Introduction
Results and Discussion
Monomers
Homopolymerization
Copolymerization
Terpolymerization
Epoxidation
Curing
Hydrolysis of Polymethacrylate of I
Experimental
Reduction of i-Campholene Aldehyde
Typical Preparation of a Monomer: Methacrylate of II
Typical Homopolymerization Recipe: Homopolymer Methacrylate of II
Typical Copolymerization Recipe: Copolymer of the Methacrylate of II and Acrylate of I
Solution Copolymer of the Methacrylate of II and Fumaronitrile
Typical Terpolymerization Recipe: Terpolymer of the Acrylate of I, Acrylonitrile and Butadiene
Typical Epoxidation Procedure

18. POLYMERS AND COPOLYMERS OF VINYL PINOLATE
Preparation of Vinyl Pinolate
Polymerization
Reaction of Vinyl Pinolate Copolymers with Isocyanates
Experimental
Preparation of Vinyl Pinolate
Polymerization of Vinyl Pinolate in Solution
Polymerization of Vinyl Pinolate in Suspension
Polymerization of Vinyl Pinolate in Emulsion
Copolymerization of Vinyl Pinolate and Vinyl Acetate in Solution
Copolymerization of Vinyl Pinolate and Vinyl Chloride in Solution
Copolymerization of Vinyl Pinolate and Vinyl Chloride in Emulsion
Reaction of Polymers with Isocyanates
Evaluation of Vinyl Pinolate and Vinyl Chloride Copolymers

19. HOMOPOLYMERIZATION OF HYDRONOPYL VINYL ETHER
Discussion
Experimental
Materials
Preparation of 2-Hydroronopoxyethyl Vinyl Ether
Polymerization of HVE and HEVE
X-Ray Analysis of Poly (HVE)
Evaluation of Poly (HEVE)
20. TERPOLYMERS OF ETHYLENE AND PROPYLENE WITH d-LIMONENE AND i-PINENE
 Introduction
 Results and Discussion
 Experimental
 Materials
 Preparation of EPT Rubber
 Analysis of Unsaturation
 Determination of Gel Content
 Determination of Methyl Group Content in Polymer

21. LOW MOLECULAR WEIGHT POLYMERS OF d-LIMONENE
 Experimental
 Materials
 General Procedure
 Results
 Infrared Spectra
 Nuclear Magnetic Resonance Spectra
 Optical Activity
22. BASE-CATALYSED ISOMERISATIONS OF TERPENES
Hydrocarbons
Alcohols
Aldehydes
Ketones
Acids
Esters
Epoxides
Conclusion

23. COPOLYMERS OF VINYL CHLORIDE OF PINENE
Experimental
Homopolymerization
Copolymerization
Test of Heterogeneity of a Copolymer
Evaluation of New Polymers
24. POLYALLOÃ—CIMENE
Experimental
Monomer
Polymerizations
Polymer
Ozonolysis
Discussion of Results

25. ESSENTIAL OIL IN CHLOROPHYLL-CAROTENE PASTE FROM PINE NEEDLES AND TWIGS
Abstract

26. ESSENTIAL OIL OF THE CONE OF PINUS Sylvestris var. MONGOLICA

27. COMPONENTS OF PINE ROOTS
Conclusions
Composition of the Remaining Neutral Fraction
Composition of the Carbonyl Fraction
Composition of the Hydroxyl Fraction
Results and Discussion
Composition of Turpentine
Composition of the Resin Acid Fraction

28. WOOD TURPENTINE OIL FROM PINE STUMPS

29. BLENDING OF TURPENTINE PRODUCTS
Lilac
Pine Bouquet
Cuir De Russe (for leather)
Violet
Lavender Bouquet
Oriental
Gardenia
Fougere
Eau De Cologne
Amber
Chypre
Ylang Syn
Sweet Pea
30. BIOLOGICALLY ACTIVE COMPOUND FROM TURPENTINE
Terpenoids as Antimicrobials
Terpenoids as Anthelmintics
Terpenoids as Insecticides
Terpenoids as Plant Growth Hormones
Terpenoids as Anticancer Agents
Terpenoids as Pharmacological Agents
Terpenoid Derivatives as Biodynamic Agents
Terpenoids as Intermediates for Synthesis of Bioâ–«dynamic Agents

31. INSECTICIDES BASED ON TURPENTINE
Toxaphene (C10H10 Cl8)
Stroban (C10H11Cl7)

32. TALL OIL
History of Tall Oil
Production Processes for Tall Oil
Recovery of Tall Oil
Acid Refining of Tall Oil
Fractionation of Tall Oil
Composition and Properties of Tall Oil
Crude Tall Oil
Distilled Tall Oil
Acid Refined Tall Oil
Fractionated Tall Oil
Analysis and Testing of Tall Oil Products
Shipping, Storage and Handling of Tall Oil Products
Crude Tall Oil
Acid Refined Tall Oil
Tall Oil Fatty Acids and Distilled Tall Oils
Tall Oil Heads
Tall Oil Pitch
Tall Oil Rosin
Safety Notes
Applications of Tall Oil
The Chemistry of Tall Oil Fatty and Rosin Acids

www.entrepreneurindia.co
Chemical Composition of Tall Oil Fatty Acids
General Reactions of Tall Oil Fatty Acids
Chemical Composition of Tall Oil Rosin
General Reactions of Tall Oil Rosin
Tall Oil Products in Surface Coatings
Tall Oil in Alkyd Resins
Tall Oil Formulations in Alkyd Resins
Esters of Tall Oil Products
Tall Oil Formulations in Esters
Other Uses for Tall Oil Products
Tall Oil in the Plasticizer Field
Esterification of Tall Oil for Plasticizers
Tall Oil in Adhesives and Linoleum Cement
Tall Oil in Rubber-based Adhesives
Tall Oil in Hot-Melt Adhesives
Tall Oil Products in Linoleum Cements
Formulation with Tall Oil
Formulation with Tall Oil Esters
33. DIMER ACIDS
The General Characteristics of Dimer Acids
Introduction
Dimer Acids Manufacture and Feedstock
By Products of the Dimerization Reaction
Monomer Acids
Trimer Acids
Structure and Properties of Dimer Acids
Structure of Dimer Acids
Analysis of Dimer Acids
Physical Properties of Dimer Acids
Chemical Reactions of Dimer Acids
Reactions of the Double Bonds and at the \(\pi \)-Carbon Atoms
Reactions of the Carboxyl Groups to Produce Monomeric Derivatives
Reactions of the Carboxyl Groups to Produce Polymeric Derivatives
Commercial Applications of Dimer Acids and Their Derivatives
Introduction
Applications of Dimer Acids
Applications of Monomer Acids and Derivatives
Applications of Trimer Acids and Derivatives
Applications of Low-Molecular Weight Derivatives of Dimer Acids
Applications of High-Molecular Weight Dimer Acids Derivatives
Applications of Other Polymeric Nitrogen Derivatives of Dimer Acids
Niir Project Consultancy Services (NPCS) can provide Process Technology Book on Oleoresin and Pine Chemicals (Rosin, Terpene Derivatives, Tall Oil, Resin & Dimer Acids)

See more

https://goo.gl/F6VRtX
https://goo.gl/egjxep
https://goo.gl/85swVo
Visit us at

www.entrepreneurindia.co
Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall,
New Delhi-110007, India.

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Fax: +91-11-23841561
Website: www.entrepreneurindia.co, www.niir.org

Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd
Who are we?

- One of the leading reliable names in industrial world for providing the most comprehensive technical consulting services

- We adopt a systematic approach to provide the strong fundamental support needed for the effective delivery of services to our Clients’ in India & abroad
We at NPCS want to grow with you by providing solutions scale to suit your new operations and help you reduce risk and give a high return on application investments. We have successfully achieved top-notch quality standards with a high level of customer appreciation resulting in long lasting relation and large amount of referral work through technological breakthrough and innovative concepts. A large number of our Indian, Overseas and NRI Clients have appreciated our expertise for excellence which speaks volumes about our commitment and dedication to every client's success.
We bring deep, functional expertise, but are known for our holistic perspective: we capture value across boundaries and between the silos of any organization. We have proven a multiplier effect from optimizing the sum of the parts, not just the individual pieces. We actively encourage a culture of innovation, which facilitates the development of new technologies and ensures a high quality product.
What do we offer?

- Project Identification
- Detailed Project Reports/Pre-feasibility Reports
- Business Plan
- Industry Trends
- Market Research Reports
- Technology Books and Directory
- Databases on CD-ROM
- Laboratory Testing Services
- Turnkey Project Consultancy/Solutions
- Entrepreneur India (An Industrial Monthly Journal)
How are we different?

- *We have two decades long experience in project consultancy and market research field*
- *We empower our customers with the prerequisite know-how to take sound business decisions*
- *We help catalyze business growth by providing distinctive and profound market analysis*
- *We serve a wide array of customers, from individual entrepreneurs to Corporations and Foreign Investors*
- *We use authentic & reliable sources to ensure business precision*
Our Approach

- Requirement collection
- Thorough analysis of the project
- Economic feasibility study of the Project
- Market potential survey/research
- Report Compilation
Who do we serve?

- Public-sector Companies
- Corporates
- Government Undertakings
- Individual Entrepreneurs
- NRI’s
- Foreign Investors
- Non-profit Organizations, NBFC’s
- Educational Institutions
- Embassies & Consulates
- Consultancies
- Industry / trade associations

www.entrepreneurindia.co
Sectors We Cover

- Ayurvedic And Herbal Medicines, Herbal Cosmetics
- Alcoholic And Non Alcoholic Beverages, Drinks
- Adhesives, Industrial Adhesive, Sealants, Glues, Gum & Resin
- Activated Carbon & Activated Charcoal
- Aluminium And Aluminium Extrusion Profiles & Sections,
- Bio-fertilizers And Biotechnology
- Breakfast Snacks And Cereal Food
- Bicycle Tyres & Tubes, Bicycle Parts, Bicycle Assembling
Sectors We Cover

- Bamboo And Cane Based Projects
- Building Materials And Construction Projects
- Biodegradable & Bioplastic Based Projects
- Chemicals (Organic And Inorganic)
- Confectionery, Bakery/Baking And Other Food
- Cereal Processing
- Coconut And Coconut Based Products
- Cold Storage For Fruits & Vegetables
- Coal & Coal Byproduct
Copper & Copper Based Projects
Dairy/Milk Processing
Disinfectants, Pesticides, Insecticides, Mosquito Repellents,
Electrical, Electronic And Computer based Projects
Essential Oils, Oils & Fats And Allied
Engineering Goods
Fibre Glass & Float Glass
Fast Moving Consumer Goods
Food, Bakery, Agro Processing
Sectors We Cover (cont...)

- Fruits & Vegetables Processing
- Ferro Alloys Based Projects
- Fertilizers & Biofertilizers
- Ginger & Ginger Based Projects
- Herbs And Medicinal Cultivation And Jatropha (Biofuel)
- Hotel & Hospitality Projects
- Hospital Based Projects
- Herbal Based Projects
- Inks, Stationery And Export Industries
Sectors We Cover

- Infrastructure Projects
- Jute & Jute Based Products
- Leather And Leather Based Projects
- Leisure & Entertainment Based Projects
- Livestock Farming Of Birds & Animals
- Minerals And Minerals
- Maize Processing (Wet Milling) & Maize Based Projects
- Medical Plastics, Disposables Plastic Syringe, Blood Bags
- Organic Farming, Neem Products Etc.
Sectors We Cover

- Paints, Pigments, Varnish & Lacquer
- Paper And Paper Board, Paper Recycling Projects
- Printing Inks
- Packaging Based Projects
- Perfumes, Cosmetics And Flavours
- Power Generation Based Projects & Renewable Energy Based Projects
- Pharmaceuticals And Drugs
- Plantations, Farming And Cultivations
- Plastic Film, Plastic Waste And Plastic Compounds
- Plastic, PVC, PET, HDPE, LDPE Etc.

www.entrepreneurindia.co
Sectors We Cover

- Potato And Potato Based Projects
- Printing And Packaging
- Real Estate, Leisure And Hospitality
- Rubber And Rubber Products
- Soaps And Detergents
- Stationary Products
- Spices And Snacks Food
- Steel & Steel Products
- Textile Auxiliary And Chemicals
Sectors We Cover

- Township & Residential Complex
- Textiles And Readymade Garments
- Waste Management & Recycling
- Wood & Wood Products
- Water Industry (Packaged Drinking Water & Mineral Water)
- Wire & Cable
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall,
New Delhi-110007, India.

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Tel: +91-11-23843955, 23845654, 23845886, 8800733955

Mobile: +91-9811043595

Fax: +91-11-23841561

Website: www.entrepreneurindia.co, www.niir.org

Take a look at NIIR PROJECT CONSULTANCY SERVICES on
#StreetView

https://goo.gl/VstWkd
Follow Us

- https://www.linkedin.com/company/niir-project-consultancy-services
- https://www.facebook.com/NIIR.ORG
- https://www.youtube.com/user/NIIRproject
- https://plus.google.com/+EntrepreneurIndiaNewDelhi
- https://twitter.com/npcs_in
- https://www.pinterest.com/npcsindia/
THANK YOU!!!

For more information, visit us at:
www.entrepreneurindia.co