Global Industrial Adhesives Market is Expected to Reach USD 57.12 Billion by 2022 - A Boon for Entrepreneurs

Production Process and Formulation of Industrial Adhesives

(Polyvinyl Acetate Wood Adhesives, Aminoresin Wood Adhesives, Phenolic Resin Wood Adhesive, Tannin-Based Wood Adhesives, Phenolic Adhesives and Modifiers, Cyanoacrylate Adhesives, Hot-Melt Adhesives, Pressure-Sensitive Adhesives, Water-Based Adhesives)
Introduction

Adhesives are made in various types and may be synthetic or natural. The term synthetic adhesive means the adhesive which is prepared by using synthetic chemical such as synthetic resin. The manufacture of adhesive from synthetic resin is simple and can be started with very little investment. The most advantage to any type of adhesive as per market demand. Using adhesives as an alternative to mechanical fastening, welding and other joining methods can help your business achieve a competitive advantage.

Indian adhesive market size at Rs 60 bn currently implying per capita consumption of close to Rs 50. Adhesives consumption in India is much lower than the developed economies like USA,
Japan and Europe (per capital consumption estimates at Rs 750 in USA, Japan and South Korea combined). Industrial adhesives are fluids or gels, which help in holding two surfaces together by sticking to both of them and preventing their joint movement. They include glues and adhesives. The global industrial adhesives market is expected to reach USD 57.12 billion by 2022. Growth of key end-use industries such as packaging, construction and automotive is expected to remain a key driving factor for global industrial adhesives market over the forecast period.

Growing demand from packaging industry is expected to drive the market for waterborne adhesives. These are used in label applications, packaging tapes, office tapes, flexible laminations and food packaging as they offer improved chemical and heat resistance.
Due to advantages waterborne adhesive it offers and non reactive nature they are proffered in food packaging applications. Further growing demand from automotive industry is expected to drive the market for waterborne adhesives. These are used in interior structures such as dashboards head linings and others. Automotive industry is driven by demand from middle class consumer groups from developing countries such as Brazil, India and China.

Currently, the major applications of adhesives in India are in furniture, packaging, automotive and construction. India differs with other regions in terms of usage of disposable products. Growth in usage of such items would provide thrust to adhesive demand going ahead.
Adhesives were utilized in a sophisticated manner even in ancient times. Recent years have seen the rapid development of adhesive bonding as an economic and effective method for the fabrication of components and assemblies. The great many types of adhesives are currently in use and there is no adequate single system of classification for all products. The adhesives industry has generally employed classifications based on end use, such as metal to metal adhesives, wood adhesives, general purpose adhesives, paper and packaging adhesives etc. An adhesive or formulation is generally a mixture of several materials. The extent of mixture and the ratio usually depend upon the properties desired in the final bonded joint.
The basic materials may be defined as those substances, which provide the necessary adhesive and binding properties. The type of adhesive material is easier to define and usually falls into three categories: thermosetting resins, thermoplastic resins and elastomeric resins. A thermosetting system, 100 percent reactive when in a pure state, the epoxies are very desirable and more widely used than any other chemical type. Epoxy is one of the newer types and has penetrated more fields of manufacturing operations in a shorter space of time than any of its predecessors. The many catalysts used with epoxies produce systems of variable properties. The most common are the aromatic amines and cyclic anhydrides. The phenolics or phenol formaldehyde resins are formed by the condensation reaction of phenol and formaldehyde.
The phenolic resins have been used extensively in the lamination of plywood and in filament wound structures. There are two basic classes of phenolic resins resoles and novalacs, and both begin as phenol alcohols. When combined or alloyed with other adhesive systems, they become excellent structural adhesives and are widely used in this manner throughout the aerospace industry. The vinyl polymers do not stand alone as a structural adhesive, but hundreds of adhesives are formulated by the use of this class of polymer. The vinyls are important to adhesive bonding not only from the adhesive standpoint, but because the films derived from these substances are widely used as vacuum bags, slip sheets, etc. The more widely used ones are polyvinyl chloride, polyvinyl alcohol, and polyvinyl fluoride.
There are numerous kinds of adhesives used in different industries; polyvinyl acetate wood adhesives, aminoresin wood adhesives, phenolic resin wood adhesives, cyanoacrylate adhesives, hot melt adhesives, water based adhesives etc. The market for adhesives is comprised of thousands of end uses. The realm of market applications expands as new end uses keep developing, driven by the need for new and innovative attachment solutions. When looking at the total market, adhesives account for about 75% of the volume consumed.

This book basically deals with adhesive properties and general characteristics, adhesive materials and properties, adhesives types, thermoplastic adhesives, thermosetting adhesives, rubber resin blends, properties of basic adhesives types, acrylics acrylic acid diesters,
allyl diglycol, carbonate, animal glues, blood albumen, butadiene styrene rubbers, butyl rubber and polyisobutylene casein, cellulose derivatives, cellulose acetate, acetate butyrate cellulose, caprate cellulose, nitrate (nitrocellulose or pyroxylin), ethyl cellulose, hydroxy ethyl cellulose, methyl cellulose and sodium carboxy methyl cellulose, ceramic or refractory inorganic adhesives, cyanoacrylates, epoxy adhesives, epoxy nylon, epoxy polyamide, epoxy polysulphide, epoxy polyurethane, fish glue, furanes etc.

The present book covers the manufacturing processes of different industrial adhesives with their formulae. It is hoped that the book can serve to new entrepreneurs, technocrats and existing units to the technology of adhesive and guide them to a useful understanding of the wide variety of adhesives which exist today.
Table of Contents

1. ADHESIVE PROPERTIES AND GENERAL CHARACTERISTICS

- Epoxies
- Phenolic Adhesives
- Nitrile Adhesives
- Vinyl Adhesives
- Neoprene
- Polyurethanes
- Silicones
- Polyesters
- Acrylics
- Rosin (Sometimes Called Colophony)
- Polysulfide Rubber Adhesives
- Ceramic Adhesives
- Cyanoacrylate Adhesives
- Polyaromatic Adhesives
- Vinyl Phenolic Adhesives
Neoprene Phenolic Adhesives
Epoxy-Silicone Adhesives
Epoxy-Polysulfide Adhesives
Epoxy-Nylon Adhesives
Epoxy-Phenolic Adhesives
Nitrile-Phenolic Adhesives
Modified Epoxy Intermediate Curing Films

2. ADHESIVE MATERIALS AND PROPERTIES
The Components of An Adhesive
Adhesives Types
Thermoplastic Adhesives
Thermosetting Adhesives
Rubber-Resin Blends
Properties of Basic Adhesives Types
Acrylics
Acrylic Acid Diesters
Allyl Diglycol Carbonate
Animal Glues
Blood Albumen
Butadiene-styrene Rubbers
Butyl Rubber and Polyisobutylene
Casein
Cellulose Derivatives
Cellulose Acetate
Cellulose Acetate-butyrate
Cellulose Caprate
Cellulose Nitrate (Nitrocellulose or Pyroxylin)
Ethyl Cellulose
Hydroxy Ethyl Cellulose
Methyl Cellulose and Sodium Carboxy Methyl Cellulose
Ceramic or Refractory Inorganic Adhesives
Cyanoacrylates
Epoxy Adhesives
Epoxy-Nylon
Epoxy-Polyamide
Epoxy-Polysulphide
Fish Glue
Furanes
Hot-Melt Adhesives
Inorganic Adhesives and Cements
Sodium Silicate
Phosphate Cements
Basic Salts (Sorel Cements)
Litharge Cements
Sulphur Cements
Hydraulic Cements
Inorganic Polymers
Ionomer Resins
Isocyanates
Isocyanate Adhesives
Isocyanate Modified Adhesives
Isocyanate Polyester Methane Adhesives
Melamine Formaldehyde
Natural Rubber
Nitrile Rubbers
Permanence
Nylon Adhesives
Solution Adhesives
Hot-melts
Phenolic-nylon
Phenolic-epoxy
Phenol Formaldehyde (Acid Catalysed)
Phenolic Formaldehyde (Hot Setting)
Phenolic-Neoprene
Phenolic-Nitrile
Phenolic-Polyamide
Phenolic-Vinyl Butyral
Phenolic-Vinyl Formal
Phenoxy
Polyamides
Polyaromatics
Polyimides (PI)
Polybenzimidazoles (PBI)
Polybenzothiazoles (PBT)
Polyphenylenes (PP)
Polychloroprene (Neoprene) Rubbers
Polyesters
Allyls
Alkyds (or Glyptals)
Polyesters (Unsaturated)
Polystyrene
Polysulphide (Thiokol)
Polyurethanes
Polyvinyl Acetals
Polyvinyl Acetate
Polyvinyl Alkyl Ethers
Polyvinyl Alcohol
Polyvinyl Chloride
Reclaim Rubber
Resorcinol Formaldehyde and Phenol
Resorcinol Formaldehyde
Rubber Derivatives
Chlorinated Rubber
Cyclised Rubber
Rubber Hydrochloride
Silicones
Silicone Rubber
Epoxy-silicone
Soy(a)bean and Vegetable Proteins
Starch
Thermoplastic Resins (Miscellaneous)
Coumarone-indene
Shellac
Rosin (Colophony)
Oleo-Resins (Vegetable Oils + Rosin, Phenolic or Alkyd Resins)
Bitumen (Including Asphalt)
Urea Formaldehyde
Water and Solvent Based Adhesives
Waxes

3. PHYSICAL TESTING OF ADHESIVES
Introduction
Strength Properties
Assessment of Durability and Strength
Parameters
Fatigue
Creep
Flexural Strength
Peel Strength
Durability
Non-Destructive Testing
Standard Test Methods

4. POLYVINYL ACETATE WOOD ADHESIVES
Introduction
Background
Chemistry of Polyvinyl Acetate
A. Production of Vinyl Acetate Monomer
B. Polymerization of Vinyl Acetate
Formulating A Pva-Based Adhesive
A. General Considerations
B. Formulating and Compounding
C. Guide Formulations
Aspects of Application
A. Joint Design
B. Surface Preparation
C. Adhesive Preparation
D. Application
E. Assembly Conditions
F. Influence of Temperature

Performance of Pva Adhesives
A. Factors Affecting Durability
B. Specifications
C. Testing

Conclusion

5. AMINORESIN WOOD ADHESIVES
Introduction
Chemistry of Aminoresins
A. Urea-Formaldehyde Condensation
B. Melamine-Formaldehyde Condensation
C. Aniline-Formaldehyde Condensation
D. Reaction Kinetics: Urea-Formaldehyde
E. Reaction Kinetics: Melamine-Formaldehyde
F. Reaction of Methylolureas in the Presence of Cellulose
G. Reaction Mechanisms: Urea-Formaldehyde
H. Reaction Mechanisms: Melamine-Formaldehyde
I. Hardening
J. Analysis

Chemistry and Technology of Application of Aminoresin Adhesives for Wood
A. General Principles of Manufacture and Application
B. Formulaire
C. Plywood and Particleboard Adhesives
D. Melamine Laminates
E. Glulam, Finger Jointing and Joinery Adhesives
F. Toxicity

6. PHENOLIC RESIN WOOD ADHESIVE
Introduction
Chemistry of Phenol-Formaldehyde Condensations
A. Reaction Mechanisms
B. Nature of Mechanism: Methylene and Methylene-Ether Bridges
C. Acid Catalysis
D. Alkaline Catalysis
E. Metallic Ions Catalysis and Orientation of the Reaction
F. Reaction Kinetics
G. Hardening
H. Resorcinol and Meta-Aminophenol Condensates

Chemistry and Technology of Application of Phenolic Resin Adhesives for Wood
A. General Principles of Manufacture
B. Plywood and Particleboard Adhesives and the Factors Regulating Their Application
C. Properties of Phenolic Adhesives for Plywood
D. Formulation of Plywood Glue Mixes
E. Plywood Manufacturing Variables
F. Wood-Related Factors
G. General Observations on Particleboard Manufacture
H. Dry-Out Resistance
I. Wood Laminating and Finger Jointing Adhesives
J. Fast Setting Adhesives for Finger Jointing

7. TANNIN-BASED WOOD ADHESIVES
 Introduction
 Chemistry of Condensed Tannins
 A. General
 B. Monoflavonoids
 C. Biflavonoids
 D. Triflavonoids and Tetraflavonoids Condensed Tannins
 E. Methods for the Analysis of Phenolic Materials Content in Tanning Extract
 Reactivity of Tannins as Macromolecules
 A. Reactivity and Orientation of Electrophilic Substitutions of Flavonoids.
 B. A- and B-Ring Reactions with Aldehydes and Their Kinetics
 C. Metal Ions Catalysis
 D. Hydrolysis and Acid and Alkaline Autocondensation
 E. Sulfitation

www.entrepreneurindia.co
Chemistry and Technology of Industrial Tannin Adhesive Formulations
A. General
B. Standardization of Industrial Tanning Extracts
C. Exterior-Grade Plywood Adhesives
D. Cold-Setting, Fast-Setting and Radio-Frequency Laminating Adhesives
E. Exterior-Grade Particleboard Adhesives
F. Corrugated Cardboard Adhesives
G. Generation of Resorcinol
H. Infrared Analysis of Resorcinol Content in Tannin-Based Adhesives

8. URETHANE STRUCTURAL ADHESIVE SYSTEMS
Introduction
A. Historical
B. Advantages and Limitations
Chemistry
A. Basic Concepts
Application Meter-Mix Equipment
Curing, Testing and Durability
9. MODIFIED ACRYLIC STRUCTURAL ADHESIVES

Introduction
History
Performance Properties
A. Advantages
B. Disadvantages
C. General Performance
Curing Properties
Technology
Handling Properties
A. Accelerator Lacquer Method
B. Two-Component Mix Method
C. Two-Component, No-Mix Method
Representative Case Histories
A. Solar Heating Panels
B. Ceramic Magnets
C. Shipbuilding
D. Sporting Goods
E. Aircraft
Meter, Mix, Dispense Equipment
Present Limitations and Future Directions of Modified Acrylic Structural Adhesives

10. PHENOLIC ADHESIVES AND MODIFIERS
Introduction
Chemistry of Phenolic Resins
Analytical Test Methods
Phenolic Adhesives
Phenolic Modifiers
Phenolic Modifiers as Tackifiers
Solvent-Based Contact Adhesives
A. Neoprene-Phenolic Contact Adhesives
11. CYANOACRYLATE ADHESIVES

Introduction
Types of Cyanoacrylate Adhesives
Mechanism of Bond Formation
Advantages
Limitations
Bonding Characteristics on Various Substrates
A. Metals
B. Plastics
C. Rubber
D. Glass
E. Wood and Porous Materials
Dispensing Cyanoacrylates
Requirements for Successful Use of Cyanoacrylate Adhesives
Commercial Applications in Product Assembly
Toxicity and Handling Precautions
A. Toxicity
B. Handling Precautions
Cleaning Up Excess Adhesive
How to Release Bonds
Shelf Life of Cyanoacrylates

12. HOT-MELT ADHESIVES
Introduction and Definition of Hot-Melt Adhesives
Advantages and Limitations of Hot-Melt Adhesives
A. Advantages
B. Limitations
Types of Hot Melts Based on the Backbone Polymer
Elementary Principles of Joint Design
Hot-Melt Adhesive Usage by Industry
Where Hot-Melt Adhesives are Used
Summary of Adhesives by Base Polymer or Use
What to do when Problems Occur while using Hot-Melt Adhesives
Safety Suggestions for using Hot-Melt Adhesives
Hot-Melt Adhesives Forms and Shapes
Hot-Melt Adhesives Anticipated Future Developments
Thermoplastic-Thermoset
Foamable Hot Melts
Exotic Polymers

13. PRESSURE-SENSITIVE ADHESIVES
Introduction
Theory
Surface Tack
Peel Adhesion
Shear Resistance
The Influence of Polymer Structure on Performance Properties
Market and Trends
A. Introduction
End Uses
Solvent-Based Pressure-Sensitive Adhesives
Water-Based Systems
Hot-Melt Pressure-Sensitive Adhesives
Radiation Curing
Coating Methods
Test Methods

14. WATER-BASED ADHESIVES
Introduction
Types of Water-Based Adhesives
Chemistry and Formulating of Water-Dispersed Adhesives
A. Natural-Rubber Latices
B. Synthetic-Rubber (Polymer) Latices
Postformed-Rubber (Polymer) Latices
Film Formation of Water-dispersed Adhesives
Bonding Techniques
A. Wet Bonding
B. Open-Time Bonding
C. Contact Bonding
D. Solvent Reactivation
E. Heat Reactivation
Forced Drying of Latex Adhesives
Properties of Latex Adhesives Versus Solvent-Based Adhesives
Applications for Various Types of Latex Adhesives
Characterization of Latex Adhesives
A. Physical Properties
B. Application Properties
C. Performance Properties
Adhesive Selection
15. THE BONDING PROCESS
Storage
Preparation of the Adhesive
Methods of Adhesive Application
Brushing
Flowing
Spraying
Roll Coating
Knife Coating
Silk Screening
Melting
Methods of Adhesive Bonding
Wet Bonding
Reactivation Bonding
Pressure-Sensitive Bonding
Curing
Other Methods of Bonding
Inadequate Bonding
Methods of Bond Curing
Direct Heat Curing
Radiation Curing
Electric Heaters
High Frequency (Radio Frequency) Dielectric Heating
Induction Heating
Low-Voltage Electric Heating (L.V.H.)
Ultrasonic Activation
Bonding Pressure
Niir Project Consultancy Services (NPCS) can provide Process Technology Book on Industrial Adhesives

See more

http://goo.gl/ala8l2
http://goo.gl/9diZeT
Visit us at

www.entrepreneurindia.co
Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd

www.niir.org
www.entrepreneurindia.co
Locate us on Google Maps

https://goo.gl/maps/BKkUtq9gevT2
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall
New Delhi-110007, India.
Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Fax: +91-11-23841561
Website:
www.niir.org
www.entrepreneurindia.co
Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd
An ISO 9001:2008 Company
Who are we?

- One of the leading reliable names in industrial world for providing the most comprehensive technical consulting services

- We adopt a systematic approach to provide the strong fundamental support needed for the effective delivery of services to our Clients’ in India & abroad
What do we offer?

- Project Identification
- Detailed Project Reports/Pre-feasibility Reports
- Business Plan
- Industry Trends
- Market Research Reports
- Technology Books and Directory
- Databases on CD-ROM
- Laboratory Testing Services
- Turnkey Project Consultancy/Solutions
- Entrepreneur India (An Industrial Monthly Journal)
How are we different?

- We have two decades long experience in project consultancy and market research field
- We empower our customers with the prerequisite know-how to take sound business decisions
- We help catalyze business growth by providing distinctive and profound market analysis
- We serve a wide array of customers, from individual entrepreneurs to Corporations and Foreign Investors
- We use authentic & reliable sources to ensure business precision
Our Approach

Requirement collection

Thorough analysis of the project

Economic feasibility study of the Project

Market potential survey/research

Report Compilation
Who do we serve?

- Public-sector Companies
- Corporates
- Government Undertakings
- Individual Entrepreneurs
- NRI’s
- Foreign Investors
- Non-profit Organizations, NBFC’s
- Educational Institutions
- Embassies & Consulates
- Consultancies
- Industry / trade associations

www.entrepreneurindia.co
Sectors We Cover

- Ayurvedic And Herbal Medicines, Herbal Cosmetics
- Alcoholic And Non Alcoholic Beverages, Drinks
- Adhesives, Industrial Adhesive, Sealants, Glues, Gum & Resin
- Activated Carbon & Activated Charcoal
- Aluminium And Aluminium Extrusion Profiles & Sections,
- Bio-fertilizers And Biotechnology
- Breakfast Snacks And Cereal Food
- Bicycle Tyres & Tubes, Bicycle Parts, Bicycle Assembling

www.entrepreneurindia.co
Sectors We Cover

- Bamboo And Cane Based Projects
- Building Materials And Construction Projects
- Biodegradable & Bioplastic Based Projects
- Chemicals (Organic And Inorganic)
- Confectionery, Bakery/Baking And Other Food
- Cereal Processing
- Coconut And Coconut Based Products
- Cold Storage For Fruits & Vegetables
- Coal & Coal Byproduct
Sectors We Cover Cont...

- Copper & Copper Based Projects
- Dairy/Milk Processing
- Disinfectants, Pesticides, Insecticides, Mosquito Repellents, Electrical, Electronic And Computer based Projects
- Essential Oils, Oils & Fats And Allied
- Engineering Goods
- Fibre Glass & Float Glass
- Fast Moving Consumer Goods
- Food, Bakery, Agro Processing
Sectors We Cover

- Fruits & Vegetables Processing
- Ferro Alloys Based Projects
- Fertilizers & Biofertilizers
- Ginger & Ginger Based Projects
- Herbs And Medicinal Cultivation And Jatropha (Biofuel)
- Hotel & Hospitality Projects
- Hospital Based Projects
- Herbal Based Projects
- Inks, Stationery And Export Industries
<table>
<thead>
<tr>
<th>Sectors We Cover</th>
<th>Cont...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure Projects</td>
<td></td>
</tr>
<tr>
<td>Jute & Jute Based Products</td>
<td></td>
</tr>
<tr>
<td>Leather And Leather Based Projects</td>
<td></td>
</tr>
<tr>
<td>Leisure & Entertainment Based Projects</td>
<td></td>
</tr>
<tr>
<td>Livestock Farming Of Birds & Animals</td>
<td></td>
</tr>
<tr>
<td>Minerals And Minerals</td>
<td></td>
</tr>
<tr>
<td>Maize Processing (Wet Milling) & Maize Based Projects</td>
<td></td>
</tr>
<tr>
<td>Medical Plastics, Disposables Plastic Syringe, Blood Bags</td>
<td></td>
</tr>
<tr>
<td>Organic Farming, Neem Products Etc.</td>
<td></td>
</tr>
</tbody>
</table>
Sectors We Cover

- Paints, Pigments, Varnish & Lacquer
- Paper And Paper Board, Paper Recycling Projects
- Printing Inks
- Packaging Based Projects
- Perfumes, Cosmetics And Flavours
- Power Generation Based Projects & Renewable Energy Based Projects
- Pharmaceuticals And Drugs
- Plantations, Farming And Cultivations
- Plastic Film, Plastic Waste And Plastic Compounds
- Plastic, PVC, PET, HDPE, LDPE Etc.
Sectors We Cover

- Potato And Potato Based Projects
- Printing And Packaging
- Real Estate, Leisure And Hospitality
- Rubber And Rubber Products
- Soaps And Detergents
- Stationary Products
- Spices And Snacks Food
- Steel & Steel Products
- Textile Auxiliary And Chemicals
Sectors We Cover

- Township & Residential Complex
- Textiles And Readymade Garments
- Waste Management & Recycling
- Wood & Wood Products
- Water Industry (Packaged Drinking Water & Mineral Water)
- Wire & Cable
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall
New Delhi-110007, India.

Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Fax: +91-11-23841561

Website:
www.niir.org
www.entrepreneurindia.co

Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd
Follow Us

➤ https://www.linkedin.com/company/niir-project-consultancy-services
➤ https://www.facebook.com/NIIR.ORG
➤ https://www.youtube.com/user/NIIRproject
➤ https://plus.google.com/+EntrepreneurIndiaNewDelhi
➤ https://twitter.com/npcs_in
➤ https://www.pinterest.com/npcsindia/
THANK YOU!!!

For more information, visit us at:
www.entrepreneurindia.co