

106-E, Kamla Nagar, New Delhi-110007, India.
 Tel: 91-11-23843955, 23845654, 23845886, +918800733955
 Mobile: +91-9811043595
 Email: npcs.ei@gmail.com, info@entrepreneurindia.co
 Website: www.entrepreneurIndia.co

Integrated Organic Farming Handbook

Code: NI248	Format: paperback
Indian Price: ₹1275	US Price: \$33.95
Pages: 472	ISBN: 9788178331522
Publisher: Asia Pacific Business Press Inc.	

Description

Organic agriculture has grown out of the conscious efforts by inspired people to create the best possible relationship between the earth and men. After almost a century of neglect, organic agriculture is now finding place in the mainstream of development and shows great promise commercially, socially and environmentally. Integrated organic farming is a commonly and broadly used word to explain a more integrated approach to farming as compared to existing monoculture approaches. It refers to agricultural systems that integrate livestock and crop production and may sometimes be known as Integrated Bio systems. It denotes a holistic system of farming which optimizes productivity in a sustainable manner through creation of interdependent agri-eco systems where annual crop plants (e.g. wheat), perennial trees (e.g. horticulture) and animals (including fishes where relevant) are integrated on a given field or property. This concept of organic farming is based on following principles: 1. Nature is the best role model for farming, since it does not use any inputs nor demand unreasonable quantities of water. 2. The entire system is based on intimate understanding of nature's ways of replenishment. The system does not believe in mining of the soil of its nutrients and do not degrade it in any way. 3. The soil in this system is considered as a living entity 4. The soil's living population of microbes and other organisms are significant contributors to its fertility on a sustained basis and must be protected and nurtured, at all cost. 5. The total environment of the soil, from soil structure to soil cover is more important and must be preserved.

Integrated Organic farming is a method of farming system, which primarily aims at cultivating the land and raising crops in such a way, so as to keep the soil alive and in good health. It is the use of organic wastes (crop, animal and farm wastes, aquatic wastes) and other biological materials, mostly produced insitu- along with beneficial microbes (bio fertilizers) to release nutrients to crops, which connotes the 'organic'

nature of organic farming. It is also termed as organic agriculture. In the Indian context it is also termed as 'Javik Krishi'. We have compiled all the relevant information regarding integrated organic farming in this book. This is first book of its kind which contains reliable details related to organic farming, green manuring, biological nitrogen fixation, uses of vermiculture bio-tech, organic fertilizers for flooded rice ecosystem, biological pest management, press mud as plant growth promoters, bio fertilizer for multipurpose tree species, rice- fish integration, response of crops to organic fertilizer and many more.

The book is very useful for farmers, agriculture, universities, consultants and research scholars.

Content

1. NECESSITY OF ORGANIC FARMING

Management of Autonomous Ecosystem

Mixed Farming

Plants

Animals

Soils

Biosphere

Crop Rotation

Benefits of Crop Diversification

Organic Cycle Optimization

In Partnership with Nature

Basic Standards and General Principles for Organic Agriculture

Crop and Soil Management

Choice of Crops and Varieties

Crop Rotations

Fertilization Policy

Management of Pests, Diseases and Weeds

Wild Products

Pollution Control

Soil and Water Conservation

Landscape

Principle Requirements and Pre-conditions

Conversion from Conventional to Organic Farming

Farms with Plant Production and Livestock

Limitations

Initiating Organic Farming

Medicinal Plants-the First Crops for Organic Farming

Management of Permaculture Farm

Permaculture Farm

Use of Draft Animal

Making Permanent Farm

Conservation of Soil

Protection of the Soil against Fires

Protection from Water Erosion

Protection from Wind Erosion

Improvement of the Soil

How to Bury Organic Matter

Mixed Cropping

Permaculture for Wastelands

Soil and Water Conservation

Pioneers

Pioneer Trees and Plants

Secondary Species

Conclusion

2. GREEN MANURING—A BASIC COMPONENT OF

ORGANIC FARMING

Definition

Objectives of Green Manuring

Subsidiary Objective of Green Manures

Catch Crops

Shade Crops

Cover Crops

Forage Crops

Advantages of Green Manuring

Soil Structure and Tilth Improvement

Fertility Improvement of Soils

Amelioration of Soil Problems

Improvement in Crop Yield and Quality

Pest Control

Classification of Green Manures

Legumes

Non-Legumes

Characteristics Desirable in Legume Green Manure Crops

Leguminous Green Manures

Non-Conventional Green Manures

Other Green Manures

Choice of Green Manure Species
Forms of Green Manuring
Agronomy of Green Manure Crops
Sesbania Speciosa
Sesbania Aculeata {Dhaincha}
Sesbania Rostrata
Crotalaria Juncea (Sunnhemp)
Tephrosia Purpurea (Wild Indigo)
Indigofera Tinctoria
Calopogonium Mucunoides
Phaseolus Trilobus (Phillipesara)
Centrosema Pubescens
Macroptilium Atropurpureum (Siratoo)
Stylosanthes Hamata
Pueraria Phaseoloides (Kudzu)
Dolichos Lab Lab var. Lignosus
Agronomy of Green Leaf Manure Shrubs and Trees
Glyricidia (Glyricidia Maculata Syn. G. sepium)
Ipomoea Cornea
Cassia Auriculata
Derris Indica (Syn. Pongamia Glabra)
Azadirachta Indica (Neem)
Thespesia Populnea
Rhizobial Inoculation
Conditions for Fixation of Nitrogen
Bacterial Inoculation of Legumes
Stage of Incorporation
Time of Incorporation
Method of Application of Green Manure
Decomposition of Green Manure
Aerobic Decomposition
Changes in the Carbon Compounds
Changes in Nitrogen Compounds
Changes in the Mineral Constituents
Anaerobic Decomposition
Carbon Nitrogen Ratio on Decomposition Process
Farmer Acceptance of Green Manuring
Limitations in Raising Green Manure Crops
Conclusions
Future Needs

3. BIOLOGICAL NITROGEN FIXATION

Definition

Symbiotic and Non-Leguminous Symbiotic System

Azotobacter

Beijerinckia

Azospirillum

Application

Other Bacteria

Blue Green Algae

Multiplication

Trough Method

Pit Method

Field Method for Large Scale Production

Limitations

Azolla

Nursery

Azolla Application Methods

Green Manuring

As Dual Crop

Efficiency of Azolla

Limitations

Frankia

Legume-Rhizobium Symbiosis

Methods of Application

Seed Inoculation

Pelleting

Other Symbiotic Nitrogen Fixing Systems

Other Bioinoculants

Phosphate Solubilising Microorganisms (PSM)

Vesicular Arbuscular Mycorrhiza (VAM)

Inoculation Methods

Transplanted Crops

Direct Sown Crops

Seed Coating

Pelleting

Fluid Drilling

Furrow Inoculation

Precropping

Plant Growth Promoting Rhizobia (PGPR)

Conclusion

Future Needs

4. APPLICATION OF VERMICULTURE

BIOTECHNOLOGY

Vermiculture Biotechnology

Earthworm for Nutrient Management

Effect on Soil Fertility

Nitrogen

Phosphorus

Potassium

Earthworms for Water Management

Earthworm Castings

Earthworms Act as Biopump

Earthworms for Effective Waste Management

Composting of Municipal and Industrial Wastes

Earthworms for Disease and Pest Management

Earthworms for Nutritional Crops

Earthworms for Sustainable Agriculture and Wasteland Development

Earthworms as Vectors of Beneficial Microorganisms

Successful Applications

Harnessing Vermiculture Biotechnology

Selection of Proper Species

Use of Vermicastings for Inoculation

Earthworms and Land Use Practices

Effect of Organic Manure and NPK Fertilizers on Earthworm Activity

Cultivation

Mulching

Irrigation

Biocides

Procedure to Prepare Vermicompost

Culturing Technique

Culture Bed

Feed Composition

Feed Application

Wormcast Production and Collection

Application of Vermicompost

Conclusion

Future Research Needs

5. ORGANIC FERTILIZERS FOR FLOODED RICE

ECOSYSTEM

Azolla

Growth and N-Fixation
Factors Affecting Growth and N-Fixation
Management Practices
Impact on Rice Yield and Soil Fertility
Economic Aspects
Suitable Agroclimatic Conditions
Adoption Constraints and Future Research Needs
Blue-Green Algae (BGA)
Nitrogen Fixing Potential and N-input
Factors Affecting Growth and N-fixation
Management Practices
Impact on Rice Yield and Soil Fertility
Economic Aspects
Suitable Agroclimatic Conditions
Adoption Constraints and Future Research Needs
Conclusions

6. PHOSPHATE SOLUBILIZING MICROORGANISMS :

FUNGI AND BACTERIA

Problems in Phosphorus Uptake
Phosphate Fixation in Different Soils
Historical Developments
Phosphate Solubilization
Factors Affecting Phosphate Solubilization
Isolation
Mechanisms of Action
Role of Acids
Other Mechanisms
Effect on Crop Yield

7. PHOSPHATE SOLUBILIZING MICROORGANISMS :

MYCORRHIZAE

Mycorrhizal Types and Their Structural and Nutritional Features
Ectomycorrhizae
Mechanism of ECM Formation
Morphology and Structure
Synthesis of Mycorrhiza
Cultural Study
Vesicular Arbuscular Mycorrhiza

Introduction
Evolution
Taxonomy

Classification
Distribution
Lifecycle
Reproduction
Sexual Reproduction
Asexual Reproduction
Method of Inoculum Production of VAM
Some Important Steps in Production of VAM
Host Plant/Growth Medium
Fertilizations/Micronutrients
Chemical Application
Control of Fungal Pathogens
Plant-Vesicular Arbuscular Mycorrhizal Fungal Interactions
Vam and Soil Biota
Control of Root Diseases
Endomycorrhiza and Plant Disease
Ectomycorrhizal Fungi and Tree Diseases
Mechanism of Disease Control
Outlook

8. APPLICATION AND EVALUATION

Different Methods for Biofertilizer Inoculation
Seed Inoculation
Top Dressing of Biofertilizers
Granular Biofertilizers
Solarisation of FYM/Compost
Granular Biofertilizer Mixed with Seed
Broadcasting of Granular Biofertilizers
Frequency of Inoculation
Liquid Inoculation of Biofertilizers
Methods of Application of Liquid Inoculation
Drenching By Sprayers
Application in Root Zone
Culture Pellet
Methods of Application of Other Biofertilizers
Blue Green Algae
Azolla
As Green Manuring
Azolla Dual Cropping
Azotobacter
Preparation and Use of Azotobacter Inoculant

Application
Azospirillum
Mycorrhizae
Endomycorrhizae
Ectomycorrhizae
Techniques for Isolation of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) from Soil in Laboratory
Gerdemann and Nicolson Technique
Sutton and Barron Flotation Technique
Method for Examination of Mycorrhizal Infection in Root Samples
Foliar Biofertilizer
Humic
Humic Acid
Introduction
Application
Soil
Foliar
Seed Treatment
Soil Benefit
Root
Seeds
Plants
Precautions
Different Media Used to Study Biofertilizer
I. Growth Media for Rhizobium
Media for Testing Nodulating Ability of Rhizobium
Jenson's Plant Nutrient
II. Isolation Of Frankia
III. Selective Media For Blue Green Algae
IV. Selective MEDIA For Azotobacter
V. Selective Media for Azospirillum
VI. Selective Media for Phosphate solubilizing organisms
VII. Selective Medium for isolation of *Pseudomonas fluorescens*, a biocontrol agent (Subba Rao, 1986).
VIII. Selective medium for isolation of *Trichoderma* - an antagonistic fungus.
9. BIOLOGICAL PEST MANAGEMENT
Cultural Control
Sanitation
Tillage
Application of Manures and Soil Amendments

Habitat Diversification
Crop Rotation
Trap Cropping
Intercropping
Strip Farming
Time of Planting
Water Management
Crop Competition
Physical and Mechanical Control
Manual Control
Burning
Solarization
Flooding
Biological Control
Conservation of Biodiversity
Conservation of Natural Enemies
Biopesticides
Botanicals
Host Resistance
Increasing the Effectiveness of Bio-control
Autocidal Control
Bheavioural Control
Pheromones
Fairomones
Success Rate of Ecological Management
Other Related Approach
Integrated Pest Management
Biologically Intensive Pest Control (BIPM)
Success with Biological Control
Rice
Sugarcane
Tomato
Tobacco
Cotton
Horticultural and Plantation Crops
Future Thrust
Conclusions
10. PRESSMUD AS PLANT GROWTH PROMOTER
Material and Methods
Results and Discussion

11. BIOFERTILIZER FOR MULTIPURPOSE TREE

SPECIES

Material and Methods

Species

Inoculum Preparation

Treatment

Preparation of Soil-Vermiculite Mixture

Inoculation of *Acacia Nilotica*

Inoculation of *Eucalyptus Hybrid*

Results

Discussion

Summary

12. TREE LEGUMES TO BIOINOCULATION OF

ENDOMYCORRHIZAE

Material and Methods

Results and Discussion

Summary

13. GROWTH RESPONSE OF CAJANUS CAJAN

Material and Methods

Growth Response of *Cajanus Cajan* to *Glomus*

Aggregatum with Cement Dust Amendments

Assessment of Percent Mycorrhizal Association

Estimation of Dry Weight

Results

Infectivity

Efficacy

Discussion

Summary

14. SALINE SOIL TOLERANCE OF SAPINDUS

EMARGINATUS

Material and Methods

Results and Discussion

15. SELF SUSTAINABILITY OF ORGANIC FARMING

Self Sustainable System

Design of Self-Sustainable Agro-Ecosystems

Ecological Processes to Optimize in Agro-Ecosystems

Mechanisms to Improve Agro-Ecosystem Immunity

Peripherals for Self-Sustainability

Bio-Diversified Agro-Ecosystems

Crop Rotations

Polycultures
Agroforestry Systems
Cover Crops
Animal Integration
Integration of Livestock
Integration of Aquaculture
Indigenous Organic Farming Practices
Soil and Water Conservation
Arable Land Management
Agronomical Measures
Wind Erosion Control
Water Erosion Control Measures
Engineering Measures
Non-Arable and Denuded Land Management
Rain Water Conservation
Mulches
Essentiality of Mulching
Mulch and Microlife Activities
Activity of Earthworm
Weed Suppression
Birds and Mulch Disturbance
Mulch and Retention of Moisture
Increase in Crop Yield
Control of Temperature
Protection Soil Against Erosion
Control of Pest and Disease
Appearance
Drawbacks of Mulching
Types of Mulch
Loose Organic and Non Organic Mulches
Vertical Mulch
Live Vegetative Barriers
Agroforestry/Alternate Land Use Systems
Basic Principles
Types of Agroforestry Systems
Alley farming
Ley farming
Silvipasture
Agri-Horticulture
Windbreaks and Shelterbelts

Interactions Between Trees and Crops

Useful for Organic Farming

Effects of Trees on Soils

Beneficial Effect

Soil Conservation

Soil Fertility

Management of Adverse Effects of Trees

Management of Agroforestry for Organic Farming

Conclusion

16. RICE ECOSYSTEM

Rice Ecosystems of Kerala

Midland and Malayoram Rice Ecosystem

Chittoor Black Soil

Irrigated Rice Ecosystem

Onattukara

Kuttanad

Karilands

Karappadam Soils

Kayal Lands

Kole Lands

The Coastal Saline Rice Eco Systems

High Range Rice Eco System

Koottumundakan System

17. "POKKALI"—WORLD ACCLAIMED FARMING

SYSTEM MODEL

Climate

Crops and Crop Season

Reclamation of Saline Soils

Varieties

Seeds and Sowing

Seedling Establishment and Aftercare

Rice-fish/prawn integration in Pokkali fields

Selective Culture of Prawn

Rice Cum Fish Culture

Sustainable Farming System

18. NEEM : THE BEST EXAMPLE FOR ORGANIC

FARMING

Uses of Neem

Neem for Pest Control

Limonoids

Azadirachtin
Meliolatriol
Salannin
Nimbin and Nimbidin
Others
Mode of Action
Effectiveness
Good Control
Moderate Control
Poor Control
Nontarget Species
Earthworms
Beneficial Insects
Preparations for Pest Control
Methods of Application
Water Extraction
Hexane Extraction
Pentane Extraction
Alcohol Extraction
Formulations
Additives
Practical Methods for Preparations
Control of Stored Grain Pest
Uses of Neem Extract
Preparing Crushed Neem Seed
Neem to Control Stem Borers on Young Plants
Extracting Neem Oil
Controlling Bruchid Beetles in Stored Beans
Control of Soil-Borne Pests
Neem Water Extract for Plant Protection
Water based Neem Spray to Control Cutworms
Success Stories
Desert Locust
Cockroach
Brown Planthopper
Stored-Product Insects
Armyworm
Mosquitoes
Aphids
Fruit Flies

Nematodes

Snails

Crustaceans

Fungi

Aflatoxin

Plant Viruses

Propagation and Planting of Neem

Climatic Requirements

Rainfall

Temperature

Raising Seedlings

Transplanting

Conclusions

19. RICE-FISH INTEGRATION : A WIN-WIN FARMING MODEL

Externalities of Green Revolution

Lowland Rice Ecologies

Diversification—IFS Approaches

Vanishing Rice Lands—Economic Sustainability Issues

Pokkali System—the Classic Example

Rice-Fish, Harnessing Complementarities

Group Fish Farming (GFF)

Environmental Superiority

Economic Sustainability

Win-Win Land Use Model

20. RICE SOILS IN COASTAL—AREA SUSTAINABLE

SOIL NUTRIENT IN ORGANIC RICE FARMING

Organic Farming—the Truths vs. Myths

Organics as a Source of Plant Nutrients

Organic Farming and Food Security

Organic Farming—A Lesson from China

Biodynamic Farming

System of Rice Intensification (SRI)

Conclusions

21. UTILIZATION OF BENEFICIAL MICROORGANISMS

FOR SUSTAINABLE ORGANIC RICE PRODUCTION

Biological Nitrogen Fixers

Legume - Rhizobium symbiosis

Azospirillum

Different Methods of Application of Azospirillum in the Field

Cyanobacteria (Blue Green Algae - BGA)
Mass Production of BGA in the Field
Anabaena - Azolla Symbiosis
Utilization of Azolla for Rice
Mass Production of Azolla in the Field
Phosphorus Solubilising Microorganisms
Arbuscular Mucorrhizal Fungi (AMF)
Silicate Solubilising Bacteria
Zinc Solubilising Bacteria
Plant Growth Promoting Rhizobacteria (PGPR)
Efficacy of PGPR in Rice
Methods of Application of Pseudomonas Fluorescens in Rice
Microbial Consortium for Rice

22. BIOGAS POTENTIAL FROM WASTES AND ITS VALUE

Manurial Value of Digested Slurry

23. RECYCLING OF ORGANIC MATERIALS AS ORGANIC FERTILIZERS

Direct Incorporation of Organic Materials in Soil and Their Effects
Maintenance of Organic Matter in Indian Soils
Effect of Organic Matter on Soil Microorganisms
Organic Mulch
Effect of Crop Residues on Yield of Legume Crops
Effect of Straw, Neem Cake and Farmyard Manure on Yield of Maize Crop
Effect of Incorporation of Organic Matter on Paddy Crop
Influence of Humic Substances on Crop Yields

24. RESPONSE OF CROPS TO ORGANIC FERTILIZERS

Farmyard Manure and Compost
Oil-Cakes
Long-Term Effect of Organic Manures
Effect of Organic Manures in Rotation
Manurial Requirements of a Fixed Crop Rotation
Rice-Wheat Rotation
Rice-Rice Rotation
Maize-Wheat Rotation
Jowar-Wheat Rotation
Bajra-Wheat Rotation
Rotation-Jowar in Kharif-Bajra in Rabi
Response of Crops to Bone-Meal

About NIIR Project Consultancy Services (NPCS)

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595
Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Website: www.entrepreneurIndia.co