

106-E, Kamla Nagar, New Delhi-110007, India.
 Tel: 91-11-23843955, 23845654, 23845886, +918800733955
 Mobile: +91-9811043595
 Email: npes.ei@gmail.com, info@entrepreneurindia.co
 Website: www.entrepreneurIndia.co

Plant Biotechnology Handbook

Code: NI117	Format: paperback
Indian Price: ₹1100	US Price: \$125
Pages: 550	ISBN: 8186623833
Publisher: National Institute of Industrial Research	

Description

Plant biotechnology is a precise process in which scientific techniques are used to develop molecular and cellular based technologies to improve plant productivity, quality and health; to improve the quality of plant products; or to prevent, reduce or eliminate constraints to plant productivity caused by diseases, pest organisms and environmental stresses. It can be defined as human intervention on plant material by means of technological instruments in order to produce permanent effects, and includes genetic engineering and gene manipulation to obtain transgenic plants. Plant genetic engineering is used to produce new inheritable combinations by introducing external DNA to plant material in an unnatural way. The results are genetically modified plants (GMPs) or transgenic plants. The key instrument used in plant biotechnology is the plant tissue culture (PTC) technique which refers to the in vitro culture of protoplasts, cells, tissues and organs. Plant biotechnology in use today relies on advanced technology, which allows plant breeders to make precise genetic changes to impart beneficial traits to plants. The application of biotechnology in agriculture has resulted in benefits to farmers, producers and consumers. Plant biotechnology has helped make both insect pest control and weed management safer and easier while safeguarding plants against disease. The worldwide demand for food, feed and modern textile fibers can only be met in the future with the help of plant biotechnology. It has the potential to open up whole new business areas that will totally redefine the current market scope and perception.

This book majorly deals with the organisms of biotechnology, herbicide resistant plants, transgenic plants with improved storage proteins, engineering for preservation of fruits, enhancing the photosynthetic efficiency, basic requirements for nitrogen fixation, animal and plant cell cultures, insecticides, cellular characteristics which influence the choice of cell, the growth of animal and plant cells immobilized within a

confining matrix, virus free clones through plant tissue culture , microbial metabolism of carbon dioxide , organisms involved in the conversion of hydrogen, hydrogen utilization by aerobic hydrogen oxidizing bacteria, overproduction of microbial metabolites, regulation of metabolite synthesis etc.

The book contains measurement of plant cell growth, plant tissue culture, initiation of embryo genesis in suspension culture, micro propagation in plants, isolation of plant DNA and many more. This is very helpful book for entrepreneurs, consultants, students, institutions, researchers etc.

Content

1. The organisms of biotechnology

Cells - The Basic Units

Types of Microorganism

Viruses

Prokaryotes

Eukaryotes

Algae

Protozoa

Fungi

Tissue Cultures

Animal Cells

Plant Cells

2. Transgenic plants

Herbicide Resistant Plants

1. Glyphosate Tolerant Plants

2. Sulphonylurea Tolerant Plants

3. Atrazine Tolerant Plants

4. Phosphinothricin Tolerant Plants

5. Bromoxynil Tolerant Plants

Insect Resistant Plants

1. Transgenic Plants with Bt Toxin

2. Transgenic Plants with Bt Toxin and Serine Protease

Inhibitor Gene

3. Transgenic Plants with Cowpea Trypsin Inhibitor

4. Transgenic Plants with Nicotiana alata Proteinase Inhibitor

Virus Resistant Plants

1. Transgenic Plants with Viral Coat Protein

2. Transgenic Plants with Viral Nucleoprotein

- 3. Transgenic Plants with Viral SAT RNA
- 4. Transgenic Plants with Antisense RNA
- Transgenic Plants Resistant to Fungi and Bacteria
- Transgenic Plants with Improved Storage Proteins
- Sweet Proteins
- Enriching the Carbohydrate Contents
- Improving the Quality of Oils and Fats
- Male Sterility and Fertility Restoration
- Changing the Flower Colours
- Stress Tolerant Plants
- Cold Tolerant Plants
- Drought Tolerant Plants
- Plant Tolerant to High Light Intensity
- Engineering for Preservation of Fruits
- Enhancing the Photosynthetic Efficiency
- Transgenic Plants as Bioreactors
- Vaccines
- Interferons
- Pharmaceutical Compounds
- Biodegradable Plastics
- 3. Biological Nitrogen fixations
- Non-symbiotic Nitrogen Fixation
- Features Favourable for Non-symbiotic Nitrogen Fixation
 - 1. Special separation of Nitrogen Fixing Cells
 - 2. Protein-Nitrogenase Association
 - 3. High Rate of Respiration
 - 4. Time specific Nitrogenase Activity
 - 5. Association with Rapid Oxygen Consumers
 - 6. Presence of hydrogenase
 - 7. Colonization
- Nitrogenase
- Basic requirements for Nitrogen Fixation
- Mechanism of Nitrogen Reduction
- Assimilation of Ammonia
- Route I
- Route II
- Symbiotic Nitrogen Fixation
- Host Specificity
- Root Nodulation

Mechanism of Nitrogen Fixation

- (a) Oxygen Transport by Leghaemoglobin
- (b) Utilization of Oxygen by Hydrogenase

Nitrogenase

Requirement for Nitrogen reduction

Assimilation of Ammonia

4. Genetics of Nitrogen Fixation

Nif-genes of *Klebsiella Pneumoniae*

Regulation of Nif Genes

Nif-genes of *Azotobacter*

Nif-genes of *Anabaena*

Genetics of Legume-Rhizobium Nitrogen Fixation

1. Rhizobial Genes

a) Nod Genes

b) Nif Genes

c) Hup Genes

2. Legume Nodulin Genes

Leghaemoglobin Gene

Overall Regulation of Genes

Gene Transfer for Nitrogen Fixation

1. Transfer of Nif Genes to Non-Nitrogen Fixing Bacteria

2. Transfer of Nif Genes to yeasts

3. Transfer of Nif-Genes to plants

4. Transfer of Nod Genes

5. Transfer of Hup Genes

5. Mycorrhizae for Agriculture and Forestry

Mycorrhizal types and their structural and nutritional features

Ectomycorrhizae

Mechanism of ECM formation

Morphology and structure

Synthesis of mycorrhiza

Cultural study

Vesicular arbuscular Mycorrhiza

Introduction

Evolution

Taxonomy

Classification

Distribution

Lifecycle

Reproduction

Sexual reproduction
Asexual production
Method of Inoculum production of VAM
Some important steps in production of VAM
Host plant/growth medium
Fertilizations/micronutrients
Chemical application
Control of fungal pathogens
Plant vesicular arbuscular mycorrhizal fungal interactions
VAM and soil biota
Control of root diseases
Endomycorrhiza fungi and tree diseases
Mechanism of disease control
6. Animal and plant cell cultures
Historical perspectives
Products and potentials
Animal cells
Immuno biologicals
1. Virus vaccines
2. Monoclonal antibodies
3. Immunoregulator materials
Insecticides
Enzymes
Hormones
Whole cells
Plant cells
Pharmaceuticals
Food additives
Agrochemicals
Perfumes
Enzymes
Speciality Chemicals
Biomass applications of plant cell cultures
Cell culture and product synthesis
The nature of animal and plant cells in culture
Cell culture initiation
Culture development
Secondary cultures
Culture replication
Industrially useful cell cultures

Substrate independent cultures

Individuality of cell lines in relation to the productivity

Culture media

Growth media

Water

Inorganic salts

Trace elements

Vitamins

Buffers

Sources of energy and carbon

Nitrogen sources

1. Defined nitrogen sources

2. Undefined nitrogen sources

Growth factors

Other ingredients

Maintenance media

Cell culture technologies

Cellular characteristics which influence the choice of cell

culture technology

Mixing

Aeration

Doubling times

1. Sterilization of media

2. Sterilization of equipment

Cell stickiness

Immobilized cell systems

The growth and exploitation of cell grown on the surface of a

supporting solid substratum

1. Multiple process

2. Unit process

The growth of animal and plant cells immobilized within a confining matrix

1. Gel entrapment systems

2. Applications of entrapped cells

Dynamic cell systems

Air driven systems

Impeller and air driven systems

Impeller mixed systems

7. Somaclonal variation, cell selection and genotype improvement

Somaclonal variation

Historical perspective

The manifold incidence of somaclonal variation

Range of species

Characters displaying variation

Genetic nature of somaclonal variants

Pre-existing or culture induced variation

Genetic and explant sources effects

The origin of somaclonal variation

Chromosomal abnormalities

Molecular possibilities

Gene amplification and diminution

Transposable elements

Cell selection

Disease resistance

Herbicide tolerance

Nutritional quality

Other cell selection systems

8. Virus-free clones through plant tissue culture

Distribution of viruses in plants

Techniques for eradication

Heat treatment

Chemotherapy

Meristem culture

Culture media

Factors affecting developments and rooting

Virus eradication

Major use of virus-free clones

Study effect of virus infection

Source for clonal propagation

Source for in vitro mass propagation

Concluding remarks

9. Microbial metabolism of carbon dioxide

Autotrophic carbon dioxide fixation

The Calvin cycle

Molecular structure and properties of RuBP case

Phosphoribulokinase

Carboxysomes

Regulation of ribulose 1,5-biphosphate carboxylase and phosphoribulokinase synthesis

The reductive carboxylic acid cycle

The anaerobic non-phototrophic autotrophs

Heterotrophic carbon dioxide fixation

10. Microbial metabolism of Hydrogen

Introduction

The role of Hydrogen in the biosphere

Enzyme catalysing the evolution and oxidation of Hydrogen

H₂ :+ Ferredoxin Oxidoreductase

H₂ : Ferricytochrome C₃ oxidoreductase

H₂ : NAD- Oxidoreductase

H₂ : Coenzyme F420 oxidoreductase

Membrane-bound hydrogenases

Formate hydrogenlyase

Nitrogenase

Organisms involved in the conversion of hydrogen

Hydrogen-producing micro-organisms

Anaerobic conditions

1. Fermentation and fermentative bacteria

2. Anoxygenic photosynthesis and phototrophic bacteria

3. Oxygenic Phototrophic bacteria (Cyanobacteria)

4. Oxygenic green algae

Aerobic conditions : Nitrogen fixing bacteria

Hydrogen consisting organisms

Hydrogen utilization by anaerobes

1. Nitrate-reducing dentifying bacteria

2. Sulfate reducing bacteria

3. Methanogenic bacteria

4. Acetogenic bacteria

5. Furmarate-reducing bacteria

Hydrogen utilization by phototrophs

1. Anoxygenic phototrophs

2. Cyan bacteria

3. Green algae

Hydrogen utilization by aerobic hydrogen-oxidizing bacteria

The potential use of Hydrogenases and hydrogen in biotechnology

11. Microbial grwoth dynamics

Microbial growth in unlimited environments

Basic growth equation from cell number increase

Basic growth equation from increment increase in the population over a small growth time.

Basic growth equations.

Microbial growth in limited environments

Growth limitation by substrate exhaustion
Variation in the observed growth yield
Influence of the growth-limiting substrate on growth rate
Deviation of the Monod equation at High substrate concentrations
Basic growth limiting substrate equation
Modelling microbial growth in limited environments
The logistic equation
The saturation model
Microbial growth in open environments
Chemostat growth kinetics
The dilution rate
The dilution rate and biomass concentration
The dilution rate and growth limiting substrate concentration
Biomass and growth-limiting substrate concentrations in the steady state
Determination of μ_{max} from washout kinetics
Establishing and maintaining the steady state
Deviations from theoretical chemostat kinetics
Influence of variation in the observed growth yield
Microbial competition
Competition in closed environments
Competition in open environments
12. Stoichiometry of microbial growth
Growth yields and material balances
Relation between ATP production and growth yields, YATP
Influence of growth rate and maintenance energy on YATP :
anaerobic chemostat cultures
Aerobic yield studies and the influence of the efficiency of
oxidative phosphorylation on growth yields
Theoretical calculations on the ATP requirements for the formation
of microbial biomass
Influence of Cell Composition
Influence of the carbon source and complexity of the medium
Theoretical calculations on the ATP requirement for the
formation of
microbial biomass
Influence of the Nitrogen source
Influence of the carbon assimilation pathway of the growth substrate
Energy-dissipating mechanisms during growth with excess
carbon and source.
Influence of the degree of reduction of the growth substrate

Heat production

The stoichiometry of product formation

13. Ageing and death in microbes

Basic principles

Death of microbes

Ageing of microbes

Viability among microbes

Survival of populations : Cryptic growth

Injury among microbes

Stress and survival

The physiological status of the population

Overt and actual stress

Starvation

Substrate accelerated death (SAD)

Metabolic and structural injury

Thymine less death

Survival of slowly growing bacteria

Differentiation and survival

14. Effect of environment on microbial activity

Mechanisms of micro-organisms response to the environment

Primary response due to direct chemical or physicochemical effects

Enzyme inhibition and stimulation

Induction and repression of protein synthesis

Changes in cell morphology

Change in genotype

Dissolved oxygen

Cell Interactions with oxygen

Respiration

Oxygen incorporation

Oxygen as an inhibitor

Oxygen as an enzyme regulator

Measurement of dissolved oxygen

Generalized response to DOT

Diffusion limitation

Response of growing micro-organisms

Respiration rate

Change in cell constituents

Changes in metabolic products

Transient responses to changes in DOT

Control of DOT

Redox potential
Responses to carbon dioxide
Requirement for carbon dioxide
Inhibition by carbon dioxide
Water activity
Introduciton
Halotolerance and halophily
Effects of pH
Introduction
Cellular level responses
Intracellular pH
Effects of pH membrane function
Effects of pH on uptake of substrate
Effects of pH on products of metabolism
Effects of pH on cell morphology an structure
Effects of pH on the chemical environment
Effects of pH on flocculation and adhesion
Optimum pH values for growth
Causes of pH changes in cultures
Product formation
Nutrient uptake
Oxidation/reduction reaction
Chage in buffering capacity
Control of pH
By means of a buffer
By balancing metabolism
By feedback control
Temperature
Cellular-level Responses
Temperature ranges for growth
Response of growth rate to temperature
Effects of temperature on cell death
Effects of temperature on cellular components
1. Membranes
2. DNA
3. RNA
4. Proteins
Cultural effects of temperature
Response to temperature shifts
Effects on substrate utilization

Effects on product formation

Heat generation

Shear

Generation of shear

Effects of shear on filamentous fungi

Effects of shear on protozoa and animal cells in culture

Effects of products on shear rate

General control strategies

15. Biosynthesis of fatty acids and lipids

Nomenclature

Relevance and importance of lipids

Lipid composition of micro-organism

General survey

Bacteria

Yeasts

Fungi

Oleaginous micro-organism

Patterns of lipid accumulation

Factors influencing lipid biosynthesis

Growth rate

Substrate

Temperature

Growth substrate

Oxygen

pH and salinity

Other factors

Lipid biosynthesis

Acetyl- CoA carboxylase

Fatty acid synthetase

Origin of acetyl - CoA

Bacteria

Eukaryotic micro-organism

Biosynthesis of unsaturated fatty acids

Biosynthesis of other fatty acids

Biosynthesis of lipids from fatty acids

Triacylglycerols

Phospholipids

Waxes

Poly α - hydroxybutyrate

Microbial metabolism of alkanes and fatty acids

Alkane-utilizing organisms

Uptake of alkanes

Mechanisms of alkane oxidation

Oxidation of primary alcohols to fatty acids

Metabolism of fatty acids derived from alkanes

α -oxidation

ω -oxidation

Microbial products derived from alkanes

Fatty alcohols and aldehydes

Fatty acids

Surfactants

16. Microbial metabolism of aromatic compounds

Fission of the Benzene nucleus

Pereparation of nucleus for aerobic fission

Reactions which follow ring fission

Pathways of degradation

Meta fission pathways

Degradation of 4-hydroxyphenylacetic, homoprotocataleuic

Homogentistic and genetoside acids

Procatecluate 4.5 dioxygenase

Degradation of 3,0- Methylgllic acid: Biological formation of methanol

Ortho fission pathway

Separation of pathways used for aromatic catabolism by bacteria

Catabolism of aromatic compounds in trichosporon cutaneum

Degradation of aromatic industrials pollutants and pesticides

Complete mineralization

Catabolic plasmids

Release of halogen substrates from benzen nucleus

Incomplete degradation of aromatics

17. Bacterial respiration

The generation of the proton motive force

Bacterial respiratory chains

Respiration linked proton translocation

The proton motive force

The utilization of the proton motive force

ATP synthesis

Active transport of solutes

Biotechnological aspects of bacterial respiration

Biomass production

Waste treatment and metabolite production

18. Mechanisms of enzyme catalysis

The events in an enzyme catalysed reaction

Enzyme mechanisms

Enzyme kinetics

Binding of the substrate to the enzyme

Conformational changes

Covalent bond making and breaking

Glucose isomerase

19. Enzyme evolution

Regulation of metabolism

Induction

Nutritional repression

Feedback regulation

Limiting accumulation of end products

Feedback resistance mutations

Additional types of regulations

Permeability consideration

Recent approaches to strain construction

Amino-acid production by genetically engineered strains of

E-Coli and related organisms

Strain construction in other species

20. Microbial photosynthesis

Historical background

General characteristics of microbial photosynthesis

Structure and synthesis of photosynthetic pigments

Chlorophylls and bacteriochlorophylls

Carotenoids

The phycobissins

The initial reactions primary photochemistry and electron transport

Light harvesting

Charge separation and electron transport in an oxygenic

photosynthesis

ATP synthesis

The eubacterial photosynthetic microbes

Introduction

The anoxygenic phototrophic bacteria

The major groups

Development of the photosynthetic apparatus

Carbon metabolism

The Cyano bacteria: oxygenic photosynthesis in a diverse prokaryotic group

Organization of the photosynthetic apparatus

Interrelationship between photosynthetic and chemosynthetic carbon metabolism in cyanobacteria

21. Extra cellular enzymes

Mechanism of Secretion

Signal hypothesis

Signal hypothesis in bacteria

Signal sequence structure

Function of signal peptide and translocation

Processing of the precursor

Gene fusion studies

Membrane associate intermediates

Alternative export mechanisms; post translocational secretion

Aspects of enzyme secretion in fungi

Regulation of Extracellular enzyme synthesis

Regulation of protein synthesis

Induction of exoenzymes

End-product repression

Catabolite repression

Patterns of exoenzyme synthesis

RNA polymerase modification

Catabolite repression

Translocational control of exoenzyme synthesis in bacteria

Control of secretion

22. Overproduction of microbial metabolites

Effects of nutrient limitation

Effects of pH and uncouplers of oxidative phosphorylation

Effects of Temperature

23. Regulation of metabolite synthesis

A phospholactase system in Klebsiella

Catabolism of unnatural sugars

Regulatory mutations

Modular pathways

Evolution of an aliphatic amidase in pseudomonas

Evolution of a new β -Galactosidase in E-Coli

Properties of the wild-type proteins

Evolution of lactose utilization

Evolution of new activities for ebg enzymes

About NIIR Project Consultancy Services (NPCS)

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595
Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Website: www.entrepreneurIndia.co