106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Website: www.entrepreneurIndia.co

# The Complete Book on Glass and Ceramics Technology (2nd Revised Edition)

| Code: NI163                                 | Format: paperback   |
|---------------------------------------------|---------------------|
| Indian Price: ₹1495                         | US Price: \$150     |
| Pages: 624                                  | ISBN: 9788178331751 |
| Publisher: Asia Pacific Business Press Inc. |                     |

## **Description**

Ceramics also known as fire clay is an inorganic, non-metallic solid article, which is produced by the art or technique of heat and subsequent cooling. The ceramics industry in India came into existence about a century ago and has matured over time to form an industrial base. From traditional pottery making, the industry has evolved to find its place in the market for sophisticated insulators, electronic and electrical items. The ceramic industry has been modernizing continuously, by newer innovations in product design, quality etc.

Glass is an inorganic product typically produced by melting a mixture of silica, soda and calcium compound with desired metallic oxides that serves as coloring agents. Indian glass industry will increase on the sidelines of real estate growth across retail, residential and office estate. Glass production involves the fusion of several inorganic substances. These various substances include products such as silica sand, soda ash, dolomite and limestone, representing together 99% of all the raw materials, excluding recycled glass.

Glass-ceramics are mostly produced in two steps: First, a glass is formed by a glass-manufacturing process. The glass is cooled down and is then reheated in a second step. In this heat treatment the glass partly crystallizes. In most cases nucleation agents are added to the base composition of the glass-ceramic. These nucleation agents aid and control the crystallization process. Glass-ceramics are fine-grained polycrystalline materials formed when glasses of suitable compositions are heat treated and thus undergo controlled crystallization to the lower energy, crystalline state. It is important to emphasize a number of points in this statement on glass ceramics. Glass ceramics has helped the electronics industry build much smaller and

highly efficient transistors, leading to advances in all types of devices.

The book covers almost all important aspects of Glass and Ceramic Industry:

Properties, Applications, Manufacturing, Processing and Photographs of Plant

&Machinery with Supplier's Contact Details. The major contents of the book are types
of glasses, silicate glasses, boric oxide and borate glasses, phosphorus pentoxide and
phosphate glasses, germanium dioxide and germanate glasses, titanate glasses,
nitrate glasses, glasses based on water, halide glasses, modern glass working, monax
and pyrex glass, electric welding, photo electric cells, glassy metals, analysis of glass,
glass ceramics, ceramics as electrical materials, analysis of ceramics etc.

The book will be useful to the consultants, technocrats, research scholars, libraries and
existing units and new entrepreneurswho will find a good base to work further in this

### **Content**

1. GLASS

field.

Structure

Composition

Single-Phase Glasses

Glass-Ceramics and Phase-Separated Glasses

**Properties** 

Manufacture and Processing

- 2. TYPES OF GLASSES
- A. Chemical Composition
- B. Devitrification of Fused Silica
  - 1.The Phases of Silica
  - 2. Crystalline Phases Produced by the Devitrification of Fused Silica
  - 3. Effect of Impurities on the Rate of Devitrification of Vitreous Silica
  - 4. Effect of Atmosphere on the Rate of Devitrification
  - 5. Detailed Studies of Devitrification Kinetics
  - 6. Comparison of Calculated and Measured Growth Rates
- C. The Kinetics Of Melting Of Quartz And Cristobalite
  - 1. Superheating of Quartz and Cristobalite Melting
  - 2. Evidence for Residual Crystalline Structures in Fused Silica
- D. Viscosity of Fused Silica
- 3. SILICATE GLASSES

- A. Binary Systems
- 1. Alkali Silicate Systems
- a. Structural considerations
- b.Glass formation in the alkali silicate systems
- c.Phase diagrams of the alkali silicate systems
- d. The kinetics of devitrification
- 2. Binary Systems Containing Alkaline Earth Oxides
- B. THE NA2O-CAO-SIO2 SYSTEM
- 1. Structural Considerations
- 2. The Glass-forming Region
- 3. The Phase Diagram
- 4. Devitrification Kinetics
- C. SOME SPECIAL SILICATE GLASSES
- 1. Alkali Aluminosilicates
- 2. Invert Glasses
- 4. BORIC OXIDE AND BORATE GLASSES
- A. The Preparation and Properties of Boric Oxide Glass
- B. Glass Formation in Binary Borate Systems
- 1. Ranges of Glass Formation
- 2. Phase Diagrams
- 3. Chemical Bonding in Systems Containing Highly Polarizable Cations
- C. Ternary Systems
- 1. The Na2O-B2O3-SiO2 System
- 2. Aluminoborate Systems
- D. The Structure of Vitreous Boric Oxide and Borate Glasses
- 1. Vitreous Boric Oxide
- 2. Alkali Borate Glasses
- 5. PHOSPHORUS PENTOXIDE AND PHOSPHATE GLASSES`
- A. Phosphorus Pentoxide
- 1. Structure and Polymorphism
- 2. Polymorphic Transformations and Melting
- 3. Viscosity and Melt Allotropy
- B. Glass Formation in Binary Phosphate Systems
- 1. Regions of Glass Formation
- 2. The Structure of Phosphate Glasses
- 3. Paper Chromatography of Phosphate Glasses
- 4. Devitrification Kinetics of Sodium Metaphosphate Glass
- 5. The Role of B2O3 and Al2O3 in Phosphate Glasses

- 6. GERMANIUM DIOXIDE AND GERMANATE GLASSES
- A. Germanium Dioxide
- 1. Structure and Allotropy
- 2. GeO2 Glass: Viscosity
- B. Glass Formation in GeO2 systems
- 1. Experimental Results
- 2. Phase Diagrams
- 3. The Structure of Alkali Germanate Glasses and Mels

#### Tellurite and Vanadate Glasses

- A. Tellurite Glasses
- 1. Glass Formation
- 2. The Structure of TeO2 and Tellurite Glasses
- 3. Viscosity of Tellurite Melts: Liquidus Temperatures
- B. Vanadate Glasses
- 1. Glass Formation
- 2. Liquidus Temperature in Vanadate Systems
- 3. The Structure of V2O5 and Vanadate Melts

#### Miscellaneous Oxide Glasses

- A. Aluminate Glasses
- 1. Glass-forming Compositions
- 2. Liquidus Temperatures; Structure
- B. Glasses Base Ga2O3
- C. Carbonate Glasses
- D. Titanate Glasses
- E. Glasses Based on As2O3, Sb2O3 AND Bi2O3
- 1. Glass-Forming Behaviour of the Oxides
- 2. Binary Systems
- F. Glasses Based on MoO3 AND WO3
- G. Sulphate and Selenite Glasses
- 7. NITRATE GLASSES
- A. Glass-Forming Systems
- B. The System KNO3-Ca(NO3)2
- C. Theories of Glass Formation
- 1. Structural Considerations
- 2. Kinetic Considerations
- D. The Mechanism of Melting
- 8. GLASSES BASED ON WATER

- A. Vitreous Water
- B. The System H2O-H2O
- C. Other Aqueous Solutions
- D. Structure of Water
- E. Hydrogen Bonding in KHSO4
- 9. HALIDE GLASSES
- A. BeF2 Glasses
- 1. BeF2
- 2. Model Relationships between Fluorides and Oxides
- 3. Binary Fluorberyllate Systems
- 4. Microphase Separation
- B. Other Fluoride Glasses
- C. ZnCl2 Glasses

#### 10. CHALCOGENIDE GLASSES

- A. COMPARISON WITH OTHER SYSTEMS
- A. Comparison with Other Systems
- B. Structure and Melting Behaviour of Elements in Groups IV, V and VI
- C. Sulphur, Selenium and Tellurium
- 1. Sulphur
- 2. Selenium
- 3. Tellurium
- D. Binary Glasses
- 1. Chalcogenides with Group V Elements
- 2. Chalcogenides with Group IV Elements
- E. Ternary Glasses
- 1. Glasses Based on Arsenic Chalcogenides
- 2. Glasses Containing Both Group IV and Group V elements
- F. Halogen-Containing Glasses
- G. Viscosity of Binary Glasses
- H. Phase Diagrams of Binary Chalcogenide Systems
- I. Structures of Chalcogenide Compounds and Glasses
- 1. Chalcogenides of Group IV Elements
- 2. Chalcogenides of Group V Elements
- 3. Structures of the Chalcogenide Glasses

#### 11. MODERN GLASS WORKING

General Considerations and Equipment

Physical Properties of Glass

General Considerations and Equipment

Physical Properties of Glass

Kinds of Laboratory Glass

Soda-Glass

The Glass Working Flame. The Blowpipe

Other Types of Blowpipe

The Hand Blowpipe

The Compressed Air

The Glass Working Bench

Bloom and Devitrification

Annealing

Storing and Cleaning Glass

#### 12. FUNDAMENTAL OPERATIONS.

Skill

**Cutting Glass Tubing** 

Instruments in use for Starting the Crack

- (1) The Glass Knife.
- (2) Steel Files.
- (3) Specially hardened Steel Wheels.
- (4) Diamond.

Methods of Propagating the Crack

- (a) Mechanical.
- (1) Manual Pressure.
- (2) Impact.
- (b) The Application of Heat.
- (1) The Electrically Heated Hot Wire.
- (2) Hot Glass Rod.
- (3) The Blowpipe Flame.
- (4) Hot Iron Wires.

The Importance of good Glass Cutting

Rotating the Tube in the Flame

**Bending Glass Tubing** 

**Bending Wide Tubing** 

Drawing Out and Constructing A Tube

Bordering

Sealing a Tube

**Blowing Bulbs** 

- (a) At the end of a Tube.
- (b) In the middle of the Tube.

Joining Two Tubes of the Same Diameter Method I.

Method II.

To Blow a Hole in the Side of a Tube

**Composite Operations** 

Joining Two Tubes of Unequal Diameters

**Blowing Larger Bulbs** 

- (a) From a Bulb in the Middle of a Tube.
- (b) From a Larger Tube Sealed On.

T-Joints

Internal Seals

- (a) Inner tuber unsupported.
- (b) Inner tube supported.

Closed Circuits of Tubing

#### 13. MONAX AND PYREX GLASS

General

Monax Glass

**Physical Properties** 

Cutting

**Bending** 

**Blowing** 

Small Joints

Large Joints

Annealing

Pyrex Glass

**Physical Properties** 

Cutting

Bending

Blowing

**Joints** 

Annealing

#### 14. SEALING METALS INTO GLASS

**Platinum** 

Copper-Clad Wire

Tungsten

Copper to Glass

#### 15. ELECTRIC WELDING

General Resistance Welding Strength of Welded Wires ARC Welding

#### 16. VACCUM TUBES

The Conduction of Gases

The Electrodes

Positive Rays

X-ray Fluorescence

The Fleming Valve

The De Forest Valve

#### 17. PHOTO-ELECTRIC CELLS

General

Photo-Emissive Cells

Cell Construction

Working the Cell

Photo-Voltaic Cells

Cuprous-oxide-copper

Other Semi-Conductors

#### 18. VACUUM TECHNIQUE

**Diffusion Pumps** 

Theory

Jet Design

Working Substance

lets in Series

Cleaning

Insulation

Heating

Joints

The Importance of Wide Tubing

Use of a Reservoir

Connections and Taps

**Precautions** 

#### 19. LEAKS, OUT-GASSING AND SEALING OFF

Leaks

**Out-Gassing** 

The Electric Furnace Sealing Off 'Clean-up' and 'Getters'

#### 20. MEASUREMENT OF LOW PRESSURES

The McLEOD Gauge

Construction

Other Indications of Pressure

#### 21. GLASSY METALS

Structure

**Properties** 

Thermal Behaviour

Formation

Preparation

**Applications** 

#### 22. ANALYSIS OF GLASS

Methods of Anylysis

**Composition Analysis** 

Chemical Methods for Individual Constituents

Procedure

Procedure

**Procedures** 

Procedure

**Procedures** 

**Procedures** 

Calculate the zirconium content as zirconium dioxide, ZrO2.

**Procedures** 

Calculate the antimony as antimony trioxide, Sb2O3.

Calculate the antimony content of the sample as antimonous oxide, Sb2O3.

Procedures

**Procedures** 

**Redox State Determinations** 

Chelometry

**Procedures** 

Flame Spectroscopy

Method for Alkali Metals in Glass by Flame Emission Spectrometry.

Procedure

**Emission Spectroscopy** 

X-Ray Emission Spectroscopy Spark Source Spectrometry Electroanalytical Methods Coulometry. Determination of Properties Spectrophotometry Procedure Procedure

23. GLASS-CERAMICS
The Glass-Ceramic Process
Properties

**Commercial Applications** 

Electron Microprobe Analysis

24. Ceramics SCOPE

Microscopy

25. RAW MATERIALS Clays Nonclay Minerals Special Materials

26. FORMING PROCESS

Material Preparation

Forming Process

Thermal Treatment

Methods of Thermal Treatment

Physical and Chemical Changes During Thermal Treatment

#### 27. CERAMICS POTTERY

The Indian Industry
Raw Materials
Manufacture
Production and Trade

## 28. PROPERTIES AND APPLICATIONS Composition and Microstructure

Chemical Properties of Ceramic Materia's

**Optical Properties** 

Thermal Properties

**Elastic Properties** 

Strength

**Electrical and Magnetic Properties** 

Composites and Cermets

**Uses of Ceramics** 

#### 29. CERAMICS AS ELECTRICAL MATERIALS

**Electrical Conduction Phenomena** 

Ionic Conduction in Ceramics

Electronic conduction in Ceramics

Nonstoichiometric and Solute-Controlled Electronic Ceramics.

Ceramics With High Electronic Conductivity or With Nonlinear Behaviour

Mixed Conduction in Ceramics

#### 30. ANALYSIS OF CERAMICS

**Abrasives** 

Cements, Lime, and Gypsum

Clay Products, Whitewares, and Porcelains

**Enamels and Glazes** 

Glass and Glass Ceramics

Refractories

**Newer Ceramics** 

Methods of Analysis

Determination of The Chemical Composition

Sampling

Sample Dissolution

Procedure

**Analysis** 

**Emission Spectroscopy** 

X-Ray Diffraction

Microscopy

## 31. PHOTOGRAPHS OF MACHINERY WITH SUPPLIERS CONTACT DETAILS

### **About NIIR Project Consultancy Services (NPCS)**

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Prefeasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

NIIR PROJECT CONSULTANCY SERVICES 106-E, Kamla Nagar, New Delhi-110007, India. Tel: 91-11-23843955, 23845654, 23845886, +918800733955 Mobile: +91-9811043595

Email: npcs.ei@gmail.com, info@entrepreneurindia.co Website: www.entrepreneurIndia.co