

106-E, Kamla Nagar, New Delhi-110007, India.
 Tel: 91-11-23843955, 23845654, 23845886, +918800733955
 Mobile: +91-9811043595
 Email: npes.ei@gmail.com, info@entrepreneurindia.co
 Website: www.entrepreneurIndia.co

Epoxy Resins Technology Handbook (Manufacturing Process, Synthesis, Epoxy Resin Adhesives and Epoxy Coatings) 2nd Revised Edition

Code: NI305	Format: paperback
Indian Price: ₹0	US Price: \$0
Pages: 576	ISBN: 9788178331829
Publisher: Asia Pacific Business Press Inc.	

Description

Epoxy is a term used to denote both the basic components and the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resin are a class of thermoset materials used extensively in structural and specialty composite applications because they offer a unique combination of properties that are unattainable with other thermoset resins.

Epoxies are monomers or prepolymers that further reacts with curing agents to yield high performance thermosetting plastics. They have gained wide acceptance in protecting coatings, electrical and structural applications because of their exceptional combination of properties such as toughness, adhesion, chemical resistance and superior electrical properties. Epoxy resins are characterized by the presence of a three membered cycle ether group commonly referred to as an epoxy group 1,2-epoxide, or oxirane. The most widely used epoxy resins are diglycidyl ethers of bisphenol-A derived from bisphenol-A and epichlorohydrin.

The market of epoxy resins are growing day by day. Today the total business of this product is more than 100 crores. Epoxy resins are used for about 75% of wind blades currently produced worldwide, while polyester resins account for the remaining 25%. A standard 1.5-MW (megawatt) wind turbine has approximately 10 tonnes of epoxy in its blades. Traditionally, the markets for epoxy resins have been driven by demand generated primarily in areas of adhesives, building and civil construction, electrical insulation, printed circuit boards, and protective coatings for consumer durables, amongst others.

The major contents of the book are synthesis and characteristics of epoxy resin, manufacture of epoxy resins, epoxide curing reactions, the dynamic mechanical properties of epoxy resins, physical and chemical properties of epoxy resins, epoxy resin adhesives, epoxy resin coatings, epoxy coating give into water, electrical and electronic applications, analysis of epoxides and epoxy resins and the toxicology of epoxy resins.

It will be a standard reference book for professionals and entrepreneurs. Those who are interested in this field can find the complete information from manufacture to final uses of epoxy resin. This presentation will be very helpful to new entrepreneurs, technocrats, research scholars, libraries and existing units.

Content

1. Synthesis and Characteristics of Epoxy Resin

Introduction

Structure of Epoxides

Epoxidation of Unsaturated Hydrocarbons

Catalytic Oxidation of Ethylene and Higher Olefins

Epoxidation by Peroxy Acids and Their Esters

Preparation of Peroxy Acids

In Situ Epoxidation

The Epoxidation Mechanism

Unsaturated Materials

Epoxidation by Inorganic Peroxy Acids

Epoxidation with Aliphatic and Aromatic Hydrocarbon Hydroperoxides

Epoxidation with Chromic Acid and Chromyl Compounds

Biological Epoxidation

Dehydrohalogenation of Substituted Hydroxyl Compounds

The Epoxidation Mechanism

Halohydrin Formation

Epoxides from Epichlorohydrin

Glycidyl Ethers

Glycidyl Esters

Nitrogen-Containing Epoxides

Thioglycidyl Epoxides

Silicon-Containing Epoxides

Organophosphorus Epoxides

Halogen-Containing Epoxides

Epoxides from Hydroxy Sulfonates or Halogenated Acetates

Epoxides from Glycols

Epoxidation by Condensation

Darzens Glycidic Ester Condensations

Epoxides from Ylids

Epoxides from Halogenated Ketones and Nickel Carbonyl

Epoxides from the Reaction of Diazomethane with Aldehydes or Ketones

Epoxides Containing Unsaturation

Conclusions

2. Manufacture of Epoxy Resins

Raw Materials

Manufacture

Plant Location

Machinery Needed

Profit

3. Epoxide-Curing Reactions

The Effect of Epoxide Structure on Reactivity with Curing Agents

The Mechanism of the Curing Reaction

Polyaddition Reactions

Polyamines

Polyamides

Polyureas

Polyurethanes

Polyisocyanates

Polymercaptans

Polyhydric Alcohols

Polyphe nols

Polycarboxylic Acids

Polybasic Acid Anhydrides

Silanes and Silanols

Others

Polymerization

Anionic Catalysts

Cationic Catalysts

4. The Dynamic Mechanical Properties of Epoxy Resins

Basic Parameters

The Glassy Transition and Dynamic Mechanical Dispersion

Temperature and Frequency Interdependence

Experimental
Results and Discussion
Standard Measurements
Dynamic Measurements
Comparison of Results
Treatment by Reduced Variables
Conclusions

5. Physical and Chemical Properties of Epoxy Resins
Solubility and Surface Properties
Network Structure and Physical Properties
Aging and Chemorheology
Bisphenol a Epoxy Homopolymers and Copolymers
Thermal Transition Effects
Dynamic Mechanical Response
Relaxation and Fracture Properties
Properties Compared with Elastomers and Thermoplastics

6. Epoxy Resin Adhesives
Introduction
Theories of Adhesion and Adhesive-joint Strength
Wetting and Spreading Phenomena
Boundary-Layer Theory
Surface-Attachment Theory of Adhesive-Joint Strengths
Stress Distribution in Adhesive Joints
Rheological Aspects of Adhesives
Unified Interpretation of Adhesive-Joint Strengths
Physical and Mechanical Aspects of Epoxy-Resin Adhesives
Dynamic Mechanical Techniques
Mechanical Behavior of Epoxy Adhesives During Joint Formation
Strength of Adhesive Materials
Chemical Aspects of Epoxy-based Adhesives
Curing Agents for Bisphenol A Epoxy Adhesives
Modifiers for Bisphenol A Epoxy Adhesives
Adhesives Based on Other Epoxy Materials
Technological Properties of Epoxy-adhesive Systems
Cure and Thermal Softening Behavior of Epoxy Adhesives
Stress and Environmental Durability of Adhesive Joints
Applications of Epoxy Adhesives
Future Prospects

7. Epoxy Resin Coatings

Classification of Epoxy-Resin Coatings

Epoxy Resins Commonly Used in Coatings

Epoxy-Resin Esters

Esters Produced from Solid Epoxy Resins

General Remarks

Formulation Latitude

Esters Produced from Liquid Epoxy Resins

Precatalyzed Liquid Epoxy Resin for the Production of Solid Epoxy Resins and Epoxy-Resin Esters

Cooking Procedure

“Two-Step” Liquid-Epoxy-Resin Route to Epoxy-Resin Esters

Cooking Procedure

Solid-Epoxy-Resin Solution Coatings

Cold-Cured Epoxy-Resin Systems

Polyamine Curing Agents

Polyamine-Adduct Curing Agents

Polyamide-Resin Curing Agents

Polyamide-Adduct Curing Agents

Tertiary Amine Curing Agents

Industrial Maintenance Coatings Based on Cold-Cured Epoxy-Resin Systems

High-Film-Build Cold-Cured Epoxy-Resin Coatings

Application Instructions

Manufacturing Instructions

Epoxy Baking Finishes

Epoxy-Phenolic Coating Systems

Epoxy-Urea-Formaldehyde Resin Coating Systems

Epoxy-Thermosetting Acrylic Coating Systems

Liquid Epoxy Resins in Solventless and Super-High-Solids Systems

Special Application Equipment and Formulation for Solventless Systems

Manufacturing Instructions

Application

Ketimine Curing Agents

Manufacturing Instructions

Application

Curing Characteristics

Powder Coatings

Application Equipment

Epoxy-Resin Powder-Coating Formulations

Fusion-Produced Epoxy-Resin Powders

Manufacturing Instructions
Applications Instructions
Dry-blended Epoxy-Resin Powders
Manufacturing Instructions
Application Instructions
Properties and Applications
Thermoplastic Epoxy Resins
Zinc-Rich and General Purpose Shop Primers
Manufacturing Instructions
Application Instructions
Manufacturing Instructions
Application Instructions
Thermoplastic-Epoxy-Resin Crosslinked Systems
Water-Reducible Epoxy Resin Coatings
Water-Reducible Epoxy-Ester Baking Finishes
Manufacturing Instructions
Application Instructions
Water-Reducible Polyamide-Cured Epoxy-Resin Coatings
Manufacturing Instructions
Manufacturing Instructions
Water-Reducible Epoxy-Resin Coatings for Electrodeposition
General Remarks
Maleinization Step After Complete Esterification of the Epoxy Resin with Organic Acids
Cooking Procedure
Application Instructions

8. Epoxy Coating Give into Water

9. Electrical and Electronic Applications : Sealants and Foams

Electronic and Electrical Applications
Introduction
Casting
Potting
Encapsulation
Coatings
Sealing
Molding
Formulation of the Resin System
Internal Stresses
Rapid Cures

Flexibilizing Epoxy Resins

Fillers

Reactive Diluents

Cycloaliphatic Epoxides

High-Temperature Epoxy-Resin Systems

Flame-Retardant Epoxy Resins

Colorless Epoxy Resins

Epoxy Formulations

Molding

Molding Compounds

Molding Technology

Liquid-Injection Molding

Pellets and Preforms

Epoxy Sealants

Epoxy Foams

Gas-Blown Foams

Syntactic Foams

One-Package Foams

Epoxy-Foam Applications

Epoxy Strippers

Handling of Epoxy Casting Systems

10. Analysis of Epoxides and Epoxy Resins

Uncured Epoxy Resins

Qualitative Tests

Detection of Free Epoxy Groups

Determination of Epoxy Group—Lithium-Chloride Test

Reagents

Procedure

Determination of Epoxy Group—Periodic Acid Test

Reagents

Procedure

Determination of Epoxy Group—Pyrolysis Test

Reagents

Procedure

Determination of Epoxy Group—Lepidine Test

Reagents

Procedure

Detection of the Bisphenol A Skeleton

Determination of Bisphenol A Epoxy Resins—Mercuric Oxide and Nitric Acid Tests

Reagents

Procedure

Determination of Bisphenol A Epoxy Resins in Coatings—Nitric Acid Test Reagents

Reagent

Procedure

Determination of Bisphenol A Epoxy Resins—Filter-Paper Test

Reagents

Procedure

Determination of Bisphenol A Epoxy Resin—Formaldehyde Test

Reagents

Procedure

Determination of Bisphenol A Epoxy Resins—Phenylenediamine Test

Reagent

Procedure

Detection of Epoxy Resins Based on 4,4'-Diamino-diphenylmethane

Determination of Epoxy Resins Based on 4,4'-Diaminodiphenylmethane

Reagents

Procedure

Detection of Other Epoxy Resins

Quantitative Tests of the Epoxy Group

Hydrohalogenation Methods

Estimation of Epoxy Group—Hydrochloric Acid in Dioxane, Methyl Ethyl Ketone, or Dimethylformamide

Reagents

Procedure

Calculations

Estimation of the Epoxy Group—Pyridinium Chloride in Pyridine

Reagents

Procedure

Hydrohalogenation by Direct Titration

Estimation of Epoxy Group

Reagents

Procedure

Calculations

Other Chemical Methods

Estimation of Other Functional Groups

Hydroxyl Group

α -Glycol Group

Estimation of α -Glycol Group

Reagents

Procedure
Calculation
Chlorine
Esterification Equivalent Weight
Estimation of Esterification Equivalent Weight
Reagents
Procedure
Calculation
Infrared Spectroscopy
Technique
Epoxide Absorption Bands
Epoxy Resins
Quantitative Estimation
Following the Degree of Cure
Other Physical Methods
Ultraviolet Spectroscopy
Electron Spin and Nuclear Magnetic Resonance Methods
Gas Chromatography
Paper Chromatography
Thin-Layer and Gel-Permeation Chromatography
Handling Properties
Molecular Weight
Softening Point
Viscosity
Color
Blends and Compounds
Hardeners and Accelerators
Organic Acid Anhydrides
Determination of Acid and Anhydride Content
Reagents
Procedure
Calculations
Amines
Determination of Amine Number
Reagents
Procedure
Calculation
The Curing Process
Curing Characteristics of Epoxy Resin-Hardener Systems
Determining the Degree of Cure

Analysis of Cured Epoxy Resins

11. The Toxicology of Epoxy Resins

Introduction

Experimental Method

Materials

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Results

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Medical Experience with Epoxy Resins

Comment

12. Photographs of Machinery with Suppliers

Contact Details

About NIIR Project Consultancy Services (NPCS)

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

NIIR PROJECT CONSULTANCY SERVICES

106-E, Kamla Nagar, New Delhi-110007, India.

Tel: 91-11-23843955, 23845654, 23845886, +918800733955

Mobile: +91-9811043595

Email: npes.ei@gmail.com, info@entrepreneurindia.co

Website: www.entrepreneurIndia.co