106-E, Kamla Nagar, New Delhi-110007, India. Tel: 91-11-23843955, 23845654, 23845886, +918800733955 Mobile: +91-9811043595

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Website: www.entrepreneurIndia.co

Epoxy Resins Technology Handbook (Synthesis, Epoxy Resin Adhesives, Epoxy Coatings) with Manufacturing Process and Machinery Equipment Details (3rd Edition)

Code: NI346	Format: paperback
Indian Price: ₹2275	US Price: \$200
Pages: 592	ISBN: 9788195370153
Publisher: Asia Pacific Business Press Inc.	

Description

Epoxy is a term used to denote both the basic components and the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resin are a class of thermoset materials used extensively in structural and specialty composite applications because they offer a unique combination of properties that are unattainable with other thermoset resins.

Epoxies are monomers or prepolymers that further reacts with curing agents to yield high performance thermosetting plastics. They have gained wide acceptance in protecting coatings, electrical and structural applications because of their exceptional combination of properties such as toughness, adhesion, chemical resistance and superior electrical properties. Epoxy resins are characterized by the presence of a three membered cycle ether group commonly referred to as an epoxy group 1, 2epoxide, or oxirane. The most widely used epoxy resins are diglycidyl ethers of biphenyl-A derived from biphenyl-A and epichlorohydrin.

The market of epoxy resins are growing day by day. Today the total business of this product is more than 100 crores. Epoxy resins are used for about 75% of wind blades currently produced worldwide, while polyester resins account for the remaining 25%. A standard 1.5-MW (megawatt) wind turbine has approximately 10 tonnes of epoxy in its blades. Traditionally, the markets for epoxy resins have been driven by demand generated primarily in areas of adhesives, building and civil construction, electrical insulation, printed circuit boards, and protective coatings for consumer durables, amonast others.

The major contents of the book are synthesis and characteristics of epoxy resin,

manufacture of epoxy resins, epoxide curing reactions, the dynamic mechanical properties of epoxy resins, physical and chemical properties of epoxy resins, epoxy resin adhesives, epoxy resin coatings, epoxy coating give into water, electrical and electronic applications, analysis of epoxides and epoxy resins and the toxicology of epoxy resins and photographs of machinery with suppliers contact details.

A total guide to manufacturing and entrepreneurial success in one of today's most epoxy resin industry. This book is one-stop guide to one of the fastest growing sectors of the epoxy resin industry, where opportunities abound for manufacturers, retailers, and entrepreneurs. This is the only complete handbook on the commercial production of epoxy resin product. It serves up a feast of how-to information, from concept to purchasing equipment.

Content

Table of Contents

1. Synthesis and Characteristics of Epoxy Resin

Introduction

Structure of Epoxides

Epoxipation of Unsaturated Hydrocarbons

Catalytic Oxidation of Ethylene and Higher Olefins

Epoxidation by Peroxy Acids and Their Esters

Preparation of Peroxy Acids

In Situ Epoxidation

The Epoxidation Mechanism

Unsaturated Materials

Epoxidation by Inorganic Peroxy Acids

Epoxidation with Aliphatic and Aromatic Hydrocarbon Hydroperoxides

Epoxidation with Chromic Acid and Chromyl Compounds

Biological Epoxidation

Dehydrohalogenation of Substituted Hydroxyl Compounds

The Epoxidation Mechanism

Halohydrin Formation

Epoxides from Epichlorohydrin

Glycidyl Ethers

Glycidyl Esters

Nitrogen-Containing Epoxides

Thioglycidyl Epoxides

Silicon-Containing Epoxides

Organophosphorus Epoxides

Halogen-Containing Epoxides

Epoxides from Hydroxy Sulfonates or Halogenated Acetates

Epoxides from Glycols

Epoxidation by Condensation

Darzens Glycidic Ester Condensations

Epoxides from Ylids

Epoxides from Halogenated Ketones and Nickel Carbonyl

Epoxides from the Reaction of Diazomethane with Aldehydes or Ketones

Epoxides Containing Unsaturation

Conclusions

2. Manufacture of Epoxy Resins

Raw Materials

Manufacture

Plant Location

Machinery Needed

Profit

3. Epoxide-Curing Reactions

The Effect of Epoxide Structure on Reactivity with Curing Agents

The Mechanism of the Curing Reaction

Polyaddition Reactions

Polyamines

Polyamides

Polyureas

Polyurethanes

Polyisocyanates

Polymercaptans

Polyhydric Alcohols

Polyphenols

Polycarboxylic Acids

Polybasic Acid Anhydrides

Silanes and Silanols

Others

Polymerization

Anionic Catalysts

Cationic Catalysts

4. The Dynamic Mechanical Properties of

Epoxy Resins

Basic Parameters

The Glassy Transition and Dynamic Mechanical Dispersion

Temperature and Frequency Interdependence

Experimental

Results and Discussion

Standard Measurements

Dynamic Measurements

Comparison of Results

Treatment by Reduced Variables

Conclusions

5. Physical and Chemical Properties of

Epoxy Resins

Solubility and Surface Properties

Network Structure and Physical Properties

Aging and Chemorheology

Bisphenol a Epoxy Homopolymers and Copolymers

Thermal Transition Effects

Dynamic Mechanical Response

Relaxation and Fracture Properties

Properties Compared with Elastomers and Thermoplastics

6. Epoxy Resin Adhesives

Introduction

Theories of Adhesion and Aohesive-joint Strength

Wetting and Spreading Phenomena

Boundary-Layer Theory

Surface-Attachment Theory of Adhesive-Joint Strengths

Stress Distribution in Adhesive Joints

Rheological Aspects of Adhesives

Unified Interpretation of Adhesive-Joint Strengths

Physical and Mechanical Aspects of Epoxy-Resin Adhesives

Dynamic Mechanical Techniques

Mechanical Behavior of Epoxy Adhesives During Joint Formation

Strength of Adhesive Materials

Chemical Aspects of Epoxy-based Adhesives

Curing Agents for Bisphenol A Epoxy Adhesives

Modifiers for Bisphenol A Epoxy Adhesives

Adhesives Based on Other Epoxy Materials

Technological Properties of Epoxy-adhesive Systems

Cure and Thermal Softening Behavior of Epoxy Adhesives

Stress and Environmental Durability of Adhesive Joints

Applications of Epoxy Adhesives

Future Prospects

7. Epoxy Resin Coatings

Classification of Epoxy-Resin Coatings

Epoxy Resins Commonly Used in Coatings

Epoxy-Resin Esters

Esters Produced from Solid Epoxy Resins

General Remarks

Formulation Latitude

Esters Produced from Liquid Epoxy Resins

Precatalyzed Liquid Epoxy Resin for the Production of Solid Epoxy Resins and Epoxy-

Resin Esters

Cooking Procedure

"Two-Step" Liquid-Epoxy-Resin Route to Epoxy-Resin Esters

Cooking Procedure

Solid-Epoxy-Resin Solution Coatings

Cold-Cured Epoxy-Resin Systems

Polyamine Curing Agents

Polyamine-Adduct Curing Agents

Polyamide-Resin Curing Agents

Polyamide-Adduct Curing Agents

Tertiary Amine Curing Agents

Industrial Maintenance Coatings Based on Cold-Cured Epoxy-Resin Systems

High-Film-Build Cold-Cured Epoxy-Resin Coatings

Application Instructions

Manufacturing Instructions

Epoxy Baking Finishes

Epoxy-Phenolic Coating Systems

Epoxy-Urea-Formaldehyde Resin Coating Systems

Epoxy-Thermosetting Acrylic Coating Systems

Liquid Epoxy Resins in Solventless and Super-High-Solids Systems

Special Application Equipment and Formulation for Solventless Systems

Manufacturing Instructions

Application

Ketimine Curing Agents

Manufacturing Instructions

Application

Curing Characteristics

Powder Coatings

Application Equipment

Epoxy-Resin Powder-Coating Formulations

Fusion-Produced Epoxy-Resin Powders

Manufacturing Instructions

Applications Instructions

Dry-blended Epoxy-Resin Powders

Manufacturing Instructions

Application Instructions

Properties and Applications

Thermoplastic Epoxy Resins

Zinc-Rich and General Purpose Shop Primers

Manufacturing Instructions

Application Instructions

Manufacturing Instructions

Application Instructions

Thermoplastic-Epoxy-Resin Crosslinked Systems

Water-Reducible Epoxy Resin Coatings

Water-Reducible Epoxy-Ester Baking Finishes

Manufacturing Instructions

Application Instructions

Water-Reducible Polyamide-Cured Epoxy-Resin Coatings

Manufacturing Instructions

Manufacturing Instructions

Water-Reducible Epoxy-Resin Coatings for Electrodeposition

General Remarks

Maleinization Step After Complete Esterification of the Epoxy Resin with Organic Acids

Cooking Procedure

Application Instructions

- 8. Epoxy Coating Give into Water
- 9. Electrical and Electronic Applications:

Sealants and Foams

Electronic and Electrical Applications

Introduction

Casting

Potting

Encapsulation

Coatings

Sealing

Molding

Formulation of the Resin System

Internal Stresses

Rapid Cures

Flexibilizing Epoxy Resins **Fillers** Reactive Diluents Cycloaliphatic Epoxides High-Temperature Epoxy-Resin Systems Flame-Retardant Epoxy Resins Colorless Epoxy Resins **Epoxy Formulations** Molding **Molding Compounds** Molding Technology Liquid-Injection Molding Pellets and Preforms **Epoxy Sealants Epoxy Foams** Gas-Blown Foams Syntactic Foams One-Package Foams **Epoxy-Foam Applications Epoxy Strippers** Handling of Epoxy Casting Systems 10. Analysis of Epoxides and Epoxy Resins **Uncured Epoxy Resins Qualitative Tests Detection of Free Epoxy Groups** Determination of Epoxy Group—Lithium-Chloride Test Reagents Procedure Determination of Epoxy Group—Periodic Acid Test Reagents Procedure Determination of Epoxy Group—Pyrolysis Test Reagents Procedure Determination of Epoxy Group—Lepidine Test

Determination of Bisphenol A Epoxy Resins—Mercuric Oxide and Nitric Acid Tests

Reagents Procedure

Reagents

Detection of the Bisphenol A Skeleton

Procedure Determination of Bisphenol A Epoxy Resins in Coatings—Nitric Acid Test Reagents Reagent Procedure Determination of Bisphenol A Epoxy Resins—Filter-Paper Test Reagents Procedure Determination of Bisphenol A Epoxy Resin—Formaldehyde Test Reagents **Procedure** Determination of Bisphenol A Epoxy Resins—Phenylenediamine Test Reagent Procedure Detection of Epoxy Resins Based on 4,4-'-Diamino-diphenylmethane Determination of Epoxy Resins Based on 4,4'-Diaminodiphenylmethane Reagents **Procedure Detection of Other Epoxy Resins** Quantitative Tests of the Epoxy Group Hydrohalogenation Methods Estimation of Epoxy Group—Hydrochloric Acid in Dioxane, Methyl Ethyl Ketone, or Dimethylformamide Reagents **Procedure** Calculations Estimation of the Epoxy Group—Pyridinium Chloride in Pyridine Reagents Procedure Hydrohalogenation by Direct Titration Estimation of Epoxy Group Reagents Procedure Calculations Other Chemical Methods Estimation of Other Functional Groups Hydroxyl Group □ -Glycol Group Estimation of a-Glycol Group Reagents **Procedure**

Calculation Chlorine Esterification Equivalent Weight Estimation of Esterification Equivalent Weight Reagents Procedure Calculation Infrared Spectroscopy Technique **Epoxide Absorption Bands Epoxy Resins Quantitative Estimation** Following the Degree of Cure Other Physical Methods Ultraviolet Spectroscopy Electron Spin and Nuclear Magnetic Resonance Methods Gas Chromatography Paper Chromatography Thin-Layer and Gel-Permeation Chromatography Handling Properties Molecular Weight Softening Point **Viscosity** Color Blends and Compounds Hardeners and Accelerators Organic Acid Anhydrides Determination of Acid and Anhydride Content Reagents Procedure Calculations **Amines Determination of Amine Number** Reagents Procedure Calculation The Curing Process Curing Characteristics of Epoxy Resin-Hardener Systems Determining the Degree of Cure

Analysis of Cured Epoxy Resins

11. The Toxicology of Epoxy Resins

Introduction

Experimental Method

Materials

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Results

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Medical Experience with Epoxy Resins

Comment

- 12. BIS Specifications
- 13. International Standards (ISO)
- 14. Plant Layout and Process Flow Chart & Diagram
- 15. Photographs of Machinery with Supplier's

Contact Details

About NIIR Project Consultancy Services (NPCS)

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Prefeasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

NIIR PROJECT CONSULTANCY SERVICES

106-E, Kamla Nagar, New Delhi-110007, India.

Tel: 91-11-23843955, 23845654, 23845886, +918800733955

Mobile: +91-9811043595

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Website: www.entrepreneurIndia.co