

106-E, Kamla Nagar, New Delhi-110007, India.
 Tel: 91-11-23843955, 23845654, 23845886, +918800733955
 Mobile: +91-9811043595
 Email: npcs.ei@gmail.com, info@entrepreneurindia.co
 Website: www.entrepreneurIndia.co

Handbook on Biogas and Its Applications(from Waste & Renewable Resources with Engineering & Design Concepts)(2nd Revised Edition)

Code: NI114	Format: paperback
Indian Price: ₹1175	US Price: \$31.75
Pages: 384	ISBN: 9789381039779
Publisher: NIIR PROJECT CONSULTANCY SERVICES	

Description

Bio Gas typically refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Organic waste such as dead plant and animal material, animal dung, and kitchen waste can be converted into a gaseous fuel called Bio Gas. Bio Gas is basically a mixture of methane and carbon dioxide; it originates from biogenic material and is a type of bio fuel. It is a low cost form of energy derived from renewable waste resources: animal manures, agricultural residues, industrial wastewater, human waste and other organic materials. Bio Gas has been used widely as a source of energy and waste treatment, and as liquid fertiliser for soil enhancement, since long time. Digestion the underlying biological process of Bio Gas technology leads to a renewable energy service that ensures a distributed energy production, in which the energy is produced at the point of consumption or demand. A Bio Gas digester, which produces the Bio Gas, also provides an excellent agricultural waste management solution, most notably animal manures. Also, capturing methane generated in a Bio Gas digester has an immensely important role to play with respect to rural energisation, poverty alleviation and development, increased industrial and agricultural efficiency and competitiveness, and improved management of our greenhouse gas emissions. The major applications of Bio Gas are as fertilizer, fuel gas, methane production, mechanical and electrical power production, diesel engine operation, etc. Bio Gas technology is one of the fastest growing renewable energy sectors worldwide, with the annual market growth exceeding 30% each year. This book majorly deals with Bio Gas plants, raw materials for Bio Gas generation, utilization of Bio Gas and slurry, engineering design of Bio Gas units for developing

countries, engineering aspects of small scale Bio Gas plants, a village scale Bio Gas pilot plant study using high rate digester technology, structural behaviour and stress conditions of fixed dome, simplified anaerobic digesters for animal waste, mechanical and electrical power from Bio Gas in developing countries, fuel gas production from organic wastes by low capital cost batch digestion, the toxicity effect of pesticides and herbicides on the anaerobic digestion process, the toxicity effect of pesticides and herbicides on the anaerobic digestion process, Bio Gas manure as a complete fertilizer, feasibility for Egyptian farmers etc.

The book contains technology of Bio Gas generation with its applications. This book will be an invaluable resource for researchers, consultants, entrepreneurs, institutional libraries, students etc.

Content

1. BIOGAS PLANTS: A BOON FOR RURAL FAMILY

Composition of biogas and slurry

Composition of slurry

Raw materials for biogas generation

Types of biogas plants

KVIC floating drum type

Janata biogas plant

Deenbandhu biogas plant

Shramik Bandhu biogas plant

Selection of size of biogas plant

Selection of type of biogas plant

Factors to be considered

Technical considerations

Consideration of Climatological factors

Consideration of Geographical factors

Economic considerations

Utilization of biogas and slurry

(a)Utilization of biogas

(b)Biogas burners

(c)Chapatti burner

(d)Biogas lamps

(e)Utilization of slurry as manure Composition of slurry

Wet slurry Dried slurry

Other uses of slurry In Pisciculture

In Mushroom production Advantages

Limitations

2. ENGINEERING DESIGN OF BIOGAS UNITS FOR DEVELOPING COUNTRIES

Design concepts used for floating cover Indian style digesters
Design concepts used for a Chinese digester

Design concepts used for a bag digester

Items to consider in examining a system

Operational factors

Composition of the organic feed-stock

Retention times

Concentrations of the feed-stocks

Organic loading rate

Degree of mixing

Heating and heat balance

Location of a digester system

Slurry effluents

Construction materials

Sizing of the digester

Size based on health criteria

Size based on production of soil conditioner

Size based on energy

Design example

case 1 : fresh manure and urine

case 2 : manure and concrete pad not collected daily

case 3 : manure on the ground, partially dried

case 4 : using destruction of volatile solids

case 5 : design using ESCAP (Indian) approach

case 5 A : fresh manure adn urine

case 5 B : manure from a concrete pad

case 5 C : manure on dirt

Construction costs

Conclusions

3. ENGINEERING ASPECTS OF SMALL SCALE BIOGAS PLANTS

Structural demands

Relation between the length and height of the bearing structure

Size of the Digester

Size of gasholder

Gasholder-digester ratio

30 days retention time (RT)

60 days RT

90 days RT

120 days RT

Engineering for extension programs

Concluding remarks

4. AN IMPROVED PLUG-FLOW DESIGN FOR THE ANAEROBIC DIGESTION OF DAIRY CATTLE WASTE

Introduction

Methodology

Description of the plant

Mixing and feeding tank

Anaerobic digester

Biogas piping and storage

Digester heating station

Capital costs

Results and discussion

Conclusions

5. A VILLAGE SCALE BIOGAS PILOT PLANT STUDY USING HIGH RATE DIGESTER TECHNOLOGY

Digester

Insulation of digester and gas-holder

Slurry heating system

Operation of plant and presentation of data

Discussions of results

Conclusions

6. COMPOST-HEATEDSMALL SCALE FARM DIGESTER APPROPRIATE FOR KOREAN CONDITIONS

System design and construction

Biogas generation from pig manure

Results and discussion

Organic material loading conditions

Maintaining high temperature by compost heat

Heat loss comparison

Economic feasibility

7. STRUCTURAL BEHAVIOUR AND STRESS CONDITIONS OF FIXED DOME TYPE OF BIOGAS UNITS

Base of fermentation tank

Wall of fermentation tank

Dome of gas-holder

Construction technique

Analytical considerations

Structural testing of biogas unit

Concluding remarks

8. FERROCEMENT GASHOLDER FOR TWO 60M3

DIGESTER

Procedures for construction of a 20 M3 gasholder

(1)Construction of the mould

(2)Reinforcement

(3)Plastering

(4)Gas-tightness

(5)Inner-steel structure Conclusions

9. SIMPLIFIED ANAEROBIC DIGESTERS FOR ANIMAL WASTE

Batch digester plant

Results

Plug flow digester plant

Results

Covered lagoon biogas system

Results

Continuous expansion digester

Tests on a small electric generator set fuelled by biogas

Results

An economic evaluation of the plants

Conclusions

10. COLD CONDITION BIOGAS

Methodology

Results and discussion

11. MECHANICAL AND ELECTRICAL POWER FROM BIOGAS IN DEVELOPING COUNTRIES

Engines modification for bio-gas use

Performance of biogas fuelled engines

Main factors limiting use of bio-gas fuelled engines and - prospective solutions

12. PERFORMANCE OF A SMALL DIESELENG IN EOPERATING IN A DUAL FUEL MODE WITHBIOGAS

Objectives of the research

The test unit

Fuels used

Test procedure

Evaluation of the test results

Discussion of the test results

Power out-put

Exhaust gas temperature and combustion

Specific fuel consumption and fuel savings

Efficiency

Comparision of mixing chamber types

Conclusions and recommendations

13. METHANE PRODUCTION FROM FARM WASTES

History of application of farm digesters

Post World War II developments

Post 1970 developments

American farm digesters

Technical problem

Economic feasibility of farm waste digestion

Barriers to application of anaerobic digestion to farm wastes Technical approaches to system improvements

Research needs

14. OPTIMIZATION OF BIO-CONVERSION OF SOLID AND

LIQUID RESIDUES

Technological aspects

1. Parallel operation

2. Series (stages) operation

3. Phased operation Advantages of phased operation

Fixed film and suspended growth reactors

1. Fixed bed

2. Expanded bed

3. Fluidized bed

4. Anaerobic rotating discs

5. Recycled bed

A. Contact or recycled flocs

B. Fluidized flocs or sludge blanket

C. The digestor

Choice of process and reactor type Micro-organisms

Bio-chemical study of the process

1. Screening of the Electron Transfer proteins and Enzymes 2. Purification Processes.

Bacterial control of the digester through co-factor analysis.

15. NOVEL PROCESS FOR HIGH-EFFICIENCY

BIO-DIGESTION OF PARTICULATE FEEDS

Limitations of conventional anaerobic digestion Novel process concepts

Phase separation High-SRT Digesters

Two-phase digestion of semi solid feeds Studies with CSTR Digesters

Studies with upflow digesters

Dominant reactions in first and second stage digesters Advantages of two-phase fermentation mode and the up flow...

digester

Energetic and economic advantages of two-phase digestion Two-phase digestion of solid feeds

Summary and conclusions

16. BIOGAS FROM ORGANIC WASTE DILUTED WITH SEA WATER

Materials and methods

The organic waste

The synthetic seawater

The Inoculum

The digestion apparatus

Experimental procedure

Analytical procedures

Methane content

Results and discussion

Conclusion

17. FUE LGAS PRODUCTION FROM ORGANIC WASTES BY LOW

CAPITAL COST BATCH DIGESTION

Background on "controlled" landfilling

Process description

Conventional landfill gas recovery

Application of enhancement to agricultural residues

Status of landfills as fuel gas sources in the United States

18. BIOGAS PRODUCTION FROM WATER HYACINTH

(EICHHORNIA CRASSIPES) : INFLUENCE OF TEMPERATURE

Materials and methods

Fermenter

Substrate

Inoculum

Analytical Methods

Experimental procedure

Results and discussion

19. THE TOXICITY EFFECT OF PESTICIDES AND HERBICIDES

ON THE ANAEROBIC DIGESTION PROCESS

Materials and methods Results and discussions

Effects of Lindane and DDT on anaerobic digestion of mixtures of cotton stalks and cow-dung.

Effect of Gesapax and Gesaprime on the anaerobic digestion of mixture of water Hyacinth and fresh cow-dung.

Effect of Gesapax and Gesaprime on the anaerobic digestion of mixture of weeds and fresh cow-dung.

Conclusion

20. BIOGAS PRODUCTION FROM SOME ORGANIC WASTES

Materials and methods

Organic wastes

Geranium flour

Akalona

Watermelon residues *Citrullus Vulgaris*

Starter

Digestion apparatus

Analytical procedures

Gas volume

Methane content of the biogas

Determinations of total solids

Experimental

Results and discussion

Biogas from geranium flour (gf)

Biogas production from Akalona (Ak)

Biogas production from Watermelon residue (WR)

21. THE ASSESSMENT OF CELLULYTIC ACTIVITIES IN ANAEROBIC DIGESTERS BY THE "TEXTILCOUPONnTECHNIQUE"

Experimental

The use of the screw-capped tubes

The crimped-caped-serum tubes

Results and discussion

Discussion

22. BIOGAS PRODUCTION FROM ANTIBIOTIC- CONTAMINATED

COW MANURE

Materials and methods

Experimental procedure

Results

Discussion

23. BIOGAS FROM LIQUID AGRO-INDUSTRIAL WASTES

DERIVED FROM BANANA AND COFFEE PROCESSING

24. A SIMPLE, RAPID AND ACCURATE METHOD FOR DETERMINATION OF CARBON-DIOXIDE IN BIOGAS

Background Theory Material Procedure

Estimation of Methane content Validation

25. ASSESSMENT OF ANAEROBICALLY DIGESTED SLURRY

AS A FERTILIZER AND SOIL CONDITIONER

Fertilization effect on effluents on field-grown wheat in clay soil Microbiological and chemical analysis

Result

Composition of effluents from bio-gas plants Introduction

Methodology Effluents sources

Detection of phytotoxicity Methods of handling effluents

Fertilization effect of effluents on corn (pot experiment) Fertilization effect of effluents on wheat (pot experiment) Effect of continuous feeding on effluent composition

Phytotoxic effect of digester effluent

Changes in fertilizer value of digester effluents during handling and storage.

Effluents as soil conditioner

Fertilizer value of the digester effluents Effect on nutrient uptake

Yield response to fertilizer application Discussion

26. REPEATED APPLICATION OF ANAEROBICALLY DIGESTED SLURRY AND ITS EFFECT ON THE YIELD AND NPK UPTAKE OF WHEAT, TURNIPS AND ONION PLANTS

Methodology Materials Experimental Chemical analysis

Results and discussion Effect on the dry matter yield Wheat plant

Turnip plant Onion plant

Effect on Nitrogen, Phosphorus and Potassium uptake

27. BIOGAS MANURE AS A COMPLETE FERTILIZER, FEASIBILITY FOR EGYPTIAN FARMERS

Composition of bio-gas manure and treatments Aim and scope of work

Results and discussion

Short term effect of bio-gas manure

Maize

Wheat

Rice

Broad bean

Cotton

Spinach

Carrots

The residual effect of bio-gas manure

Residual effect of bio-gas manure on Wheat

Residual effect of bio-gas manure on Broad bean

28 .HEALTH RISKS ASSOCIATED WITH THE USE OF BIOGAS

SLURRY: AN INTRODUCTORY NOTE

29. INCIDENCE, PERSISTENCE AND CONTROL OF PARASITIC EGGS AND CYSTS IN ANAEROBICALLY DIGESTED WASTES

Methodology

1. Incidence of Ascaris eggs and Eimeria Oocysts in different village digester.
2. Laboratory-controlled experiments Aeration of the sludge after 45 days Results and discussion

1. Incidence of Ascaris eggs and Eimeria Oocysts in different village digester

2. Laboratory-controlled experiments

Conclusion

Incidence, persistence and control of some pathogens during anaerobic digestion of organic wastes

Methodology

Isolation and identification of the pathogens Results

Isolation of pathogens in samples obtained from different operating village digester.

Persistence and control of pathogens during anaerobic digestion of sludge under laboratory conditions

Discussion

30. SURVIVAL OF PATHOGENS AND PARASITES DURING THE ANAEROBIC DIGESTION OF ORGANIC WASTES

Methodology

Laboratory digester

Organic wastes

Fermentation experiments

Biogas Analysis

Chemical Analysis

Microbiological determinations

Results and discussion

31. DEVELOPMENT AND APPLICATION OF BIOGAS TECHNOLOGY FOR RURAL AREAS OF EGYPT

Background and objective

The preliminary fact-finding phase

Outline of the R & D activities

The demonstration phase

Future plans

Conclusions

32. BIOGAS PRODUCTION FROM KITCHEN REFUSES OF ARMY CAMPS OF EGYPT USING A TWO STAGE BIOGAS DIGESTER

Materials and methods Materials fed to the digester Plant description

Inlet tank Main digester Gas-holder

Operation of the system Experimental

Methods of analysis

Methane content in the biogas CO2 content

Results and discussion

1.Heating

2.Mixing

33. AN INTEGRATED RENEWABLE ENERGY SYSTEM PROJECT

OVERVIEW

Project objectives

Design considerations

System components

Operation concept

Technical Data

34.PHOTOGRAPHS OF PLANT & MACHINERY WITH SUPPLIERS'S CONTACT DETAILS

About NIIR Project Consultancy Services (NPCS)

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and/or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes various technology books, directories, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists, and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureaus, consultants and consultancy firms as one of the inputs in their research.

Tel: 91-11-23843955, 23845654, 23845886, +918800733955

Mobile: +91-9811043595

Email: npcs.ei@gmail.com, info@entrepreneurindia.co

Website: www.entrepreneurIndia.co