Modern Technology of Plastic Processing Industries
(2nd Edition)
<table>
<thead>
<tr>
<th>Code:</th>
<th>ENI22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format:</td>
<td>Paperback</td>
</tr>
<tr>
<td>Indian Price:</td>
<td>975</td>
</tr>
<tr>
<td>US Price:</td>
<td>100</td>
</tr>
<tr>
<td>Pages:</td>
<td>592</td>
</tr>
<tr>
<td>ISBN:</td>
<td>8186623426</td>
</tr>
<tr>
<td>Publisher:</td>
<td>National institute of industrial Research</td>
</tr>
</tbody>
</table>
Plastics are contemporary, synthetic materials. Plastics are oil and gas based, and consumes less than four per cent of our oil and gas reserves. Plastic in fact saves the energy it takes less energy to convert into plastic from raw materials. Throughout their whole life circle one-third less energy needs than making paper bags. Without plastic, whole packaging would take almost double energy by around 160 percent. The better-quality properties of plastics such as sanitized or germ free barrier properties, light weight, and durability contribute appreciably to our health and quality to way of life. The Plastic industry has been witnessing a continuous increase in demand from a long time attracting many towards it. To all those who are looking forward for a proper understanding of technology and methodology used in the plastic industries so that they could penetrate into plastics industries with a consideration of the current industry trend then this book provides you about certain very essential information about Plastic. PVC can be processed by all the conventional conversion processes as used for other thermoplastics but with some modifications. This book covers an intensive study of Current Trends in Conducting Polymers with a significant and detail explanation of thermosetting, thermoplastic material and products environment health and the future prospects.

The content of the book includes information about plastic and allied products equipped with latest technology. It also includes comprehensive information on the development of the sector and manufacturing process. The several chapters of the book contain information about: Processing of PVC, Applications of PVC and so on. The book also has chapter that will provide you with some very interesting, feasible and profitable plastic project profiles that will act as guide in proper understanding and analysis of the sector. Recent Developments in Plastics Extrusion and Environment Health and Future Prospects, Constructive use of HDPE, The Processing of Fibre Re-in forced Thermoplastics Using Co-Rotating Twin Screw Extruders, Economical Film Extrusions with Modular Systems these are few chapters that are very informational and will help you in deep penetration of the industry. Along with these feature the book also encloses a directory section which list all major manufacturers of plastic processing machinery and raw material suppliers.

Content:
1. Current Trends in Conducting Polymers

Introduction
Synthesis and Properties
Technological Applications
Electromagnetic Shielding Applications
Electrooptical Display Devices
Microelectronic Devices
Photovoltaic Devices
Sensors
Scope of Conducting polymers

2. Thermosetting Plastics

Introduction
Kinds of Thermoset Plastics
Phenolic Resins
Resols and Novolaks
Acid and Base Catalysts
Solubility
Manufacturing of Phenolic Resins
Process (Novolak)
Application of Phenolic Resins
Brakelinings
Grinding Wheels (Abrasives)
Sand core bonding (Foundry)
Shellmoulds for metal castings
Wood waste boards
Impregnation
Adhesives (Plywood Glues)
Surface Coatings
Oil Varnishes
Lamp capping cement
Rubber Based Adhesives
Rubber Compounds
Tackifier
Amino-resins
Chemistry of the interaction of Urea and Formaldehyde
Methylol Ureas
Monomethylol Urea
Dimethylol Urea
U.F. Resin
Melamine-Formaldehyde Resin
Method of Manufacture
Applications of Aminoplast Mouldings
Other Industrial Applications
The Laminating Process
Melamine Resin Adhesives
Use of Wet Strength Paper
Coating Applications
The preparation of Butylated Amino resins

3. Indian plastic industry: Present Status and Future Prospects

Market perceptions
Indian plastic industry's growth
Choice of polymers
Small market and large capacity
Factors governing the performance of Indian polymer plastic Industry
The Pragmatic policy
Government's responsibility

4. Compounding of PVC

Introduction
Elements of Compounding
Methods of Compounding
Intensive Dry Mixers
Internal Intensive Batch Mixers
Continuous Mixer
Two-Roll Mills
Single-Screw Extruders
Compounder-Extruder
Twin-Screw Extruder
Custom compounding for special properties
General guidelines for PVC formulations for common product

5. Processing of PVC

Introduction
PVC Resins
Molecular Weight
Injection Moulding
Additives for improving processing
Low Shear Horizontal Mixers (Ribbon Blenders)
Higher Shear Vertical Non-fluxing Mixer
Dry Blend Properties
Low Shear and High Shear Mixing in Horizontal, Jacketed Cylindrical Blenders
Hot Melt Compounding
Two Stage (Farrel) Continuous High Intensity Fluxing Mixers
Compounding Lines-Batch Type
Suggested K-Value of PVC Resins
Influence of Formulation on Processing Behaviour
Relation of Polymer K-Values with Threshold Temperature

6. Applications of PVC

World of PVC Applications

Rigid PVC Pipes
Advantages of Rigid PVC Pipes
Chemical Resistance
Flow through Rigid PVC Pipes
Flow or Friction Losses
Manufacturing of PVC Sheet
Extrusion PVC Sheets
Extrusion Blowing of PVC Sheets
Calandrette Process
Processing of Sheets by Forming
Requirements of PVC Sheets
Blister Packaging
Vacuum Formed Products
Skin Packaging
Typical Blister Packaging Applications
Non-Packaging Application
Tropicalised Blister Pack-A New Concept
Rigid PVC Free Foam Board
PVC Integral Foam Sheets
Blow Moulded Bottles and Containers
Pet vis-a-vis PVC Stretched Bottles
Blow Moulding of PVC Bottles
Injection Blow Moulding
Cushioned Vinyl Flooring
The Screen Coating System: Advantages
One Pass Production
Double-sided Coating of Open-Weave Fabrics
PVC in Medical Application
Moulding of PVC Footwear

7. Improving Moulding Through Melt-flow Oscillation

Orientation effects in molding technology: Orientation versus relaxation
How Does Rheomolding Work?
Melt-flow oscillation improves properties

8. Basic Information and Identification of Plastics

Development of Plastic Materials

9. Classification of Plastics

Thermoplastic Resins
Thermosetting Resins
Identification of Plastics

10. Compounding Resins

Design and cost of a compound
Fillers
Plasticizers
Colourants
Role of Plastics
More Resins for Packaging

11. Common Plastic Resins

Production of PVC (Poly Vinyl Chloride)
Manufacturing Process of PVC
PVC Films
Applications of PVC Films
PVC Bottles
Rigid PVC Pipes
Low Density Polyethylene (LDPE)
Polyethylene Production from Petroleum/Natural Gas
LDPE Resins
Linear Low Density Polyethylene
Retrofitting LDPE Plant
Comparison of LLDPE with Conventional LDPE
Applications of LLDPE
High Density Polyethylene
Injection Moulding
Blow Moulding
Polypropylene
Polyster
Polystyrene
Injection Moulding
Compression Moulding
Transfer Moulding
Jet Moulding
Blow Moulding
Injection Blow Moulding
Reinforced Moulding
Flat Sheet and Film Extrusion

Characteristics of Polystyrene
Nylon
Polyurethane
Phenol Formaldehyde Resins
Epoxy Resins

12. Decoration of Plastics

Dyeing
Electro-Plating
Flock Coating
Hot-Stamping
In Mould Decoration
Painting
Printing
Vacuum Metallizing

13. Plastic Applications

Uses in Agriculture
Automobile
Building
Defence
Medical
Textile Industry
Packaging
Chemical Industry
Main Uses of Plastics in Agriculture Polyethylene


Definitions Regarding Plastic Waste
Generation of Industrial Plastic Wastes

15. Plastic Welding and Sealing

Introduction for Plastic Welding
Introduction for Heat Sealing
Heat Welding
Hot Gas Welding
Heated Tool Welding
Induction Welding
Spin Welding
Advantages
Disadvantages
Ultra Sonic Welding
Characteristics of Plastics

16. Plastic Technology

Thermoplastic Material
Thermosetting Plastics
Plastic Foam
Compounding of Plastics

17. Plastic Products

Introduction
Material Considerations
Design Considerations
Viscoelasticity
Formation of Crack
Reinforcements
Characteristics of Plastics
Shrinkage
General Design Principles

18. Recent Developments in Plastics Extrusion

Blown Films
Haul-Off
Compounding and Masterbatch
Multilayers Co-Extruded Film
Blown Coextrusion
Equipment for Blown Coex Films

19. Polymer Powders and Coatings

Introduction
Coating Powders
Characteristics of Thermosetting Powder Coatings
Powder Coating Machinery Suppliers
Electrostatic Powder Suppliers

20. Roto Moulding and Cost of Polymers
21. Polymer Blend, Fibre and composite

Polymer Blends
Composites
Laminar Composites
Particulate Composites
Fibres

22. Polypropylene applications in automobiles

Plastics Consumption

23. Recovery of Chemicals from Plastic Waste

Plastic Degradation
Modes of Polymer Degradation
Thermal Degradation
Mechanical Degradation
Photo Degradation
Bio-Degradation
Chemical Degradation
Solvolytic
Mineral Oil as Suspending Medium
Glycerolysis of Waste
ICI, Mitsubishi Rayon Link for Acrylic Recycling Techniques

24. Environment Health and Future Prospects

Hazardous Effects of Plastics
Air Pollution
Safety Measures
Product Safety
Future Prospects
Improving Working Conditions and the Environment
Technology Transfer and Development

25. Recycling Polyester Resins

Pet and Apet
RPET
PETG
CPET
Chemical Reduction
Process Route of Michigan Technology University

26. Constructive use of HDPE
Characteristics
HDPE Pipe System
Jointing Techniques
HDPE Pipes Versus Other Materials
Submarine Pipelines
Relining-New Pipes in Old
Sewer Pipes
Slurry Transportation
Irrigation
Domestics Gas Distribution
Chemical Process Piping

27. Extrusion of Cast Film, Thermoforming Film and Sheet

Features and Applications
Thermoforming Film
Production System and Line Concepts
Thermoforming Film Line
Sheet Extrusion Lines
Improvements in Machine Sectors
Re-Use of Extrusion Scrap
Automation
Development Trends

28. The Processing of Fiber Re-inforced Thermoplastics Using Co-Rotating Twin Screw Extruders

Introduction
Experimental Apparatus and Procedure
Results and Discussion

29. Economical Film Extrusions with Modular Systems

Modular Design Concept from Resin Feeding to the Win
Engineering Innovations for blown film systems
Gravimetric resin feeding systems
Extruders with a forced conveying feed section
Blown film dies further Improved
Automatic die also for barrier films
Automated downstream equipment
Flexibly expandable: modularly designed oscillating hau
Modular winders for all types of film
Modular automation provides flexibility for both film manufacturers and users. Remote diagnosis enhances system availability. Information system completes the automation concept. Modular automated extrusion lines enhance productivity.

30. Appendices

I. Formula for Calculations
II. Pigment Formulations for Dry Colouring Unplasticized Plastic
III. Recommended Use of Lubricants
IV. General Properties of Plastics
V. BIS Specifications on Plastics
VI. Drilling Thermoplastics
VII. Turning Characteristics of Thermoplastics
VIII. Machining of Plastic Sawing of Plastics
IX. A General Guide to Suitable Speeds and Feeds

31. Profiles

32. Raw Material Suppliers for Plastic and Plastic Products

33. MANUFACTURERS OF PLASTIC PROCESSING MACHINERY

Sample Chapter:
PROCESSING OF PVC

INTRODUCTION

PVC can be processed by all the conventional conversion processes as used for other thermoplastics but with some modifications. PVC Resins in unmodified form are virtually unprocessable and therefore, have to be modified by incorporating. Additives modification is also required to enhance polymer properties and to ensure the service life of the end-product.

Some additives are used to enhance polymer processability.

Other additives are used to enhance mechanical and electrical properties.

In addition, additives modifications is also used as briefed below:

Some stabilizers like dibasic lead phosphite provide a unique balance of properties such as excellent heat stability improved electrical insulation and outstanding weather resistance.

Achieving a balance of these additives to obtain the desirable processability and heat stability service life as expected compliance with the Government Regulations particularly for the food-contact applications and an acceptable level of performance at the affordable cost is mainly the Compounder's or Formulator's responsibility.

The importance of producing consistent, homogeneous dry blender pelletized compound to obtain quality end-product on day-to-day basis has to be properly understood for success in PVC processing. Variability in a compound bulk density homogeneity, flow characteristics translate directly to variations in subsequent melt processing, requiring constant readjustment of the processing conditions or higher wastages, if not properly monitored.

Factors of utmost importance for successful processing are as follows:

PVC Resins:

Three types of resins are generally used in the processing of rigid PVC.

Bulk PVC resin absorbs plasticizer faster than an equivalent K-Value suspension resin. It is pure with no emulsifier or suspending agent and with lowest wet absorbency among all PVC resins. Products with excellent clarity and sparkle can be manufactured from bulk PVC Resins.

Because of use of emulsifiers, this resin is less transparent. It gels less and has antistatic properties. It has an advantage that the products manufactured are free of fish-eyes and flow-lines.

Generally, these resins are used by blending with suspension or bulk resin to:

• reduce extrudate swelling
• improve surface finish
• improve impact resistance
• reduce plate-out tendency
• reduce static charge of resin

Molecular Weight:

Resin Molecular Weight influence the physical properties of the end-product as well as the inherent compound heat stability and processing characteristics, very generally, as shown earlier.

Injection Moulding:

A grade generally used is of 50,000 to 70,000 average molecular weight which corresponds to K-Values between 54 and 63. This range is also suitable for injection blow moulding, extrusion blow moulding and calendering.

Extrusion:

For the manufacture of pipes, profiles, conduits and sheets, PVC Resins in the Mw range of 70,000 and 1,20,000 or K-values between 63 and 75 are preferred since the properties of importance for the end-
products are higher modulus of elasticity, heat distortion temperature and impact resistance.

**ADDITIVES FOR IMPROVING PROCESSING**

Heat Stabilizers:
PVC Resins as such are very heat sensitive and have to be processed at low temperature and as such, heat stabilization is extremely important. Whatever stabilization may be used, all of them have a common function to arrest or retard PVC degradation by:

- neutralizing hydrogen chloride atoms with other groups which are more stable;
- exchange or displace labile chlorine atoms on the polymer chain with other groups of greater stability; and
- inactivating stabilizer degradation products.

Processing Aids:
Compatibility of these additives is very high, which is achieved without any detectable plasticizer action, at least at the low levels (1.0 to 5.0 phr) and perform the following functions:

- Perform fusion rate with adversely affecting melt viscosity of the compound, the heat distortion temperature or the impact resistance of the end-products.
- Plasticizers, one of the earlier usage as processing aids, lower apparent melt viscosity, reduce heat distortion temperature and have a detrimental effect on impact strength.
  - Increase melt strength and homogeneity.
  - Reduce plate-out to enable faster production.
  - Reduce surface imperfections like flowlines.

Lubricants:
These are indispensable in PVC Compunding Proper Lubrication balance is very important for the processing of rigid PVC, which use between 2 or more lubricants. They perform the following functions:

- Reduce apparent melt viscosity thereby improving melt flow
- Control frictional heat built-up by reducing friction.
- Promote release of the melt from hot metal surface of the processing equipment.

Impact Modifiers:
Effect Modifiers have the following requirements:

- Must be insoluble in the PVC matrix and must have good adhesion between the continuous glassy phase and dispersed rubber phase.
- For applications like bottles, films, blister packaging requiring clarity, the refractive index should have the same value as that of matrix.
- It should not adversely affect other properties like low permeability and low order of taste and odour.
- It must retain the elasticity at low temperature particularly for the outdoor applications in colder climates.
- It must have good thermal and light stability.

Compounding:
The selection of the compounding equipment is based on the following major parameters:

- Type of Compounds-Dry Blend or Hot Melt
- Expected productivity
- Space available

Some of the commonly used equipments are:

**Low Shear Horizontal Mixers (Ribbon Blenders):**
They provide distributive blending only ensuring uniform distribution of all particles throughout the mix. These blenders are usually equipped with a drive having ratio of 1 hp to 51 to 10 kgs. of product. These blenders, however, have insufficient radial and axial flow to transfer all the materials into the zone of higher
intensity and therefore, their overall efficiency is low. They are not able to produce a good dispersion of small quantities of liquid additives like epoxidized soyabean oil. They also cannot disperse satisfactorily agglomerates of organic substances like the benzophenone, UV absorbed. Another limitation is that at low temperature at which they operate, moisture or other volatiles are not removed. Also, it is very difficult to flush out the system, if carbon blocks and some organic pigments like phthalocyanine blue and green are added and may result in colour contamination problems.

Best results are obtained with freshly mixed powders.

Higher Shear Vertical Non fluxing Mixer:
These prduce a complete random distribution of all particles throughout the mix leaving mostly no original particle identify. There are several types commercially available with the common major feature such as:

- A bottom mixing impeller assembly rotating at high speed.
- Impellers produce two patterns of flow, one around the circumference of the fowl (that is centrifugal action) and the other a lifting casacading action from bottom to top.
- Drives with a ratio of approximately 1 hp to 2 kg of resin, which results, in rapid heating of the resin powder.
- A vertically mounted stationery blade that acts as a deflector baffle of the powder.
- Two speed motors to minimize high torque while starting.

Major functions of such mixers are:

- Densification of the powder (increase in bulk density).
- Homogenization of powder and additives and the uniform coating of resin particles with additives.
- Removal of volatiles, mainly moisture.

Dry Blend Properties:
The dry blend properties are very critical for extrusion, more so for the single extrusion. The properties that greatly influence the extrusion are Bulk Density, Molecular weight of the Resin and the Flow Properties of the powder. Dry blend properties can broadly be divided in two categories: The fundamental properties, which are mostly resin related such as grain shape, grain size, size distribution, nature of grain surface moisture content, coefficient of friction and chemical effects and the associated properties which cover bulk density, packing, grain density, angle of repose, permeability and rate of discharge.

Low Shear and High Shear Mixing in Horizontal, Jacketed Cylindrical Blenders
These mixers resemble ribbon blenders and can be very versatile with proper modifications. They consist of plough-shaped mixing tools or the bakery ploughs which rotate at a very high speed. The ploughs mechanically finalize the materials and achieve homogenity by intersecting trajectories from adjacent ploughs. The high shear mixing is achieved by means of choppers mounted on the walls of the blender. Each chopper consists of 4 blades, two tiers, mounted on the extender motor shaft on the inside of the mixing drum. The impacters consist of a series of pins mounted peripherically and perpendicularly in a moving plate, which rotates inside a pinned stationery cage. These mixing tools supplement the mixing action of ploughs and help to increase the temperature which in turn improves dispersion of the additives.

Hot Melt Compounding:
The extrusion of rigid PVC directly from the powder blend is gaining wider acceptance, yet melt compounded materials are also widely used particularly by processors with no compounding facility and conventional moulding machines or extruders. Pelletized PVC certainly has a relatively high and uniform bulk density and can, therefore, be processed much easily even on the conventional processing machines.

Melt compounding of rigid PVC formulation is generally done using twin screw extruders where temperature control is better as compared to a single screw extruder because in a multiscrew system, the mechanical energy source contributes around 54% and the thermal energy the rest 46% to the melting of the material.
The various types of extruders used are:

- single screw
- multiscrew
- co-rotating, intermeshing, parallel twin screw.
- counter-rotating, intermeshing, cylindrical twin screw
- two stage compounding extruders
- two screw compounding extruders

Two Stage (Farrel) Continuous High Intensity Fluxing Mixers:

This is a further improvement over the Bandury Mixers. In these machines, the first section of each rotor is the feed screw which runs in separate bores. The next section begins at the end of the screw and extends as far as the apex of each rotor. This section, helical in shape is known as the Forward Helix because it pushes the material towards the discharge end of the chamber. The next rotor section starts immediately after the apex. This is also helical in shape but in opposite direction. This part of the rotor forces the material back against the new material coming in thereby helping through mixing.

In two stage version, back-pressure and degree of mixing are controlled by the extruder screw-speed.

Compounding Lines Batch Type:

In batch type, hot melt compounding process centered on Bandury internal high-intensity fluxing mixers and two-roll-mix mixers, there is a great flexibility and despite the increasing popularity of continuous equipment, these machines are still in use.

One advantage of these compounding lines is that they are less sensitive than any of the compounding lines and as such, resins with a wide range of particle sizes, moisture content, bulk density as well as dry blends, cold or warm, can be successfully processed in these compounding lines.

Despite the high initial costs, the present trend with medium and large scale processors is to develop their own compound and compounding process built around specialized continuous mixers. This definitely results in Economy and Secrecy of Formulations.

<table>
<thead>
<tr>
<th>Suggested K-Value of PVC Resins</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application</strong></td>
</tr>
<tr>
<td>Rigid Transparent</td>
</tr>
<tr>
<td>Biaxive Pack</td>
</tr>
<tr>
<td>Bottles, Containers</td>
</tr>
<tr>
<td>Blow Molding</td>
</tr>
<tr>
<td>Foil Paper Boards</td>
</tr>
<tr>
<td>Rigid Opaque</td>
</tr>
</tbody>
</table>
Influence of Formulation on Processing Behaviour

1. The polymer
   a. Grain size and morphology:
   The ideal polymer for powder feed stocks would be completely devoid of porosity to give maximum density. There is no ideal combination of particle properties for all processing machines and applications. What is important is the consistency of properties so that optimum relationship between formulation, output and quality can be established by a processor.

b. K-Value
   Molecular weight of the polymer has marked influence on the processing behaviour of rigid PVC compound. The higher the K-value, the higher is the molecular weight. A lower J-Value PVC has low melt viscosity at a given temperature and generally easier to process, while a higher K-Value PVC is generally associated with superior mechanical properties of the end-product. Thus, generally:

   K-Value range 55-62

<table>
<thead>
<tr>
<th>Application</th>
<th>Process</th>
<th>K-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leather Cloth</td>
<td>Calendering</td>
<td>65-69</td>
</tr>
<tr>
<td>Coated Fabrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Films</td>
<td>Extrusion Blown</td>
<td>65-69</td>
</tr>
<tr>
<td>Cables</td>
<td>Extrusion</td>
<td>65-69</td>
</tr>
<tr>
<td>Speciality Cables</td>
<td>Extrusion</td>
<td>69-75</td>
</tr>
<tr>
<td>Footwears</td>
<td>Injection Moulding</td>
<td>65-69</td>
</tr>
<tr>
<td>Rigid Transparent Films</td>
<td>Extrusion Blown</td>
<td>65-69</td>
</tr>
<tr>
<td>Rigid Pipes, Profiles</td>
<td>Extrusion</td>
<td>65-69</td>
</tr>
<tr>
<td>Conduits, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe Fittings</td>
<td>Injection Moulding</td>
<td></td>
</tr>
</tbody>
</table>
K-Value range 66-68 : Extruded Clear Sheet
K-Value range 66-68 : Large diameter pipes
K-Value range 65-75 : Plasticized applications

The majority of rigid PVC applications is based on homopolymers. Copolymers, inspite of their unique role, are restricted to specific applications. Specialised coating materials such as PVC-PVDC Copolymer and Copolymer with Vinyl acetate and with olefin are the two types commercially in use.

A very specific application of Vinyl Acetate Copolymers is the manufacture of gramophone records. Higher acetate copolymers are used in the production of vinyl floor tiles. Medium acetate copolymers are employed in the production of calendered flooring and extruded foil, particularly the clear foil for packaging applications.

2. Lubricants:
They are incorporated, either internal type or/and external type for improving the flow and prevent sticking to the metal surfaces.
In addition to their influence on melt behaviour, lubricants can have a considerable effect on the gelation of polymer in a dry blend feedstock.

3. Heat Stabilizers:
The presence of heat stabilizers is very necessary to protect PVC melt from degradation at temperature encountered during processing.

4. Processing Aids:
These additives assist the melt processing of PVC formulations but in a different way than the lubricants. They do not reduce the melt viscosity and may sometimes even increase the melt viscosity, but they improve the elastic behaviour of the melt. Also, in processing of rigid PVC, even a small addition considerably reduces the incidence of processing defects associated with melt rupture, which is very desirable in the production of extruded sheets and profiles and for post-extrusion forming. In calendering of
foils, flow marks and edge shredding are much reduced and overall quality improved. In injection moulding, improvement in the quality of finished products is remarkable.

In addition to improved melt behaviour, processing aids can produce a faster rate of plastification of a polymer in an extruder or internal mixer.

5. Impact Modifiers:
Most of these additives have a rubbery nature and their effect on processing depends on the physical form of the additive. The impact modifiers are chosen mainly for their effect on finished products properties but they do have a beneficial effect on processing too, particularly in the case of ABS and MBS systems. Some increase in melt extensibility is also observed.

6. Fillers:
Rigid PVC formulations very rarely have high levels of fillers, as in the case of plasticized PVC because of its adverse effect on the impact properties.

Small additions of fine particle fillers can aid in the flow of powder blend feedstocks but higher levels of fillers may compete with the surface for lubricant during the powder mixing. It has been observed that higher levels of Coarie fillers impede gelation.
NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes varies technology books, directory, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureau, consultants and consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595
Email: npcs.ei@gmail.com ,info@entrepreneurindia.co
Website: www.entrepreneurIndia.co