Cultivation and Utilization of Aromatic Plants
<table>
<thead>
<tr>
<th>Code:</th>
<th>ENI155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format:</td>
<td>Paperback</td>
</tr>
<tr>
<td>Indian Price:</td>
<td>1100</td>
</tr>
<tr>
<td>US Price:</td>
<td>125</td>
</tr>
<tr>
<td>Pages:</td>
<td>608</td>
</tr>
<tr>
<td>ISBN:</td>
<td>817833027X</td>
</tr>
<tr>
<td>Publisher:</td>
<td>Pacific Business Press Inc.</td>
</tr>
</tbody>
</table>
Aroma has played a vital role, directly as well as indirectly, in the life of human beings since its appearance on the earth as a result of evolution. India, Egypt and Persia were amongst the first countries to have conceived the process of distillation of essential oils. Aromatic plants have essential or aromatic oils naturally occurring in them. They help heal mental ailments and other diseases. India is endowed with a rich wealth of medicinal plants. Aromatic (Aroma Producing) plants are those plants which produce a certain type of aroma. Their aroma is due to the presence of some kind of essential oil with chemical constituents that contain at least one benzene ring in the their chemical configuration. These plants have made a good contribution to the development of ancient Indian material medica. In recent years, there has been a tremendous growth of interest in plant based drugs, pharmaceuticals, perfumery products, cosmetics and aroma compounds used in food flavors and fragrances and natural colors in the world. The chemical nature of these aromatic substances may be due to a variety of complex chemical compounds.

There is a definite trend to adopt plant based products due to the cumulative derogatory effects resulting from the use of antibiotic and synthetics and except for a few cultivated crops, the availability of plant based material is mainly from the natural sources like forests and wastelands. There is a need to introduce these crops into the cropping system of the county, which, besides meeting the demands of the industry, will also help to maintain the standards on quality, potency and chemical composition. During the past decade, demand for aromatic plants and its products has attracted the worldwide interest, India being the treasure house of biodiversity, accounts for thousands of species which are used in herbal drugs. 90% of herbal industry requirement of raw material is taken out from the forests.

This book basically deals with cultivation of matricaria chamomilla, present agro production technology status of celery, cultivation of ocimum gratissimum linn. var clocicum, the production and perfume potential of jasminum collections, chemical modification of turmeric oil to more value added products, biologically active compounds from turpentine oil, folk medicinal uses of indigenous aromatic plants in nepal, traditional uses of selected aromatic plants of bhutan and their cultivation prospects, blending aspects of perfumes with turpentine constituents, the chemistry of mint flavour, essential oils of cinnamomum species, citral containing cymbopogon species etc..

The aim of publishing this book is to provide multidisciplinary information on aromatic plants. The book covers method of cultivation and utilization of various aromatic plants. This is very useful book for farmers, technocrats, agriculture universities, libraries, new entrepreneurs etc.

Content:
1. Cultivation of Matricaria Chamomilla
2. Damask Rose (Rosa Damascena Mill.) Cultivation and Processing
3. Present Agro production Technology Status of Celery (Apium graveolens L.)
4. Germination and Flowering of Ocimum selloii Benth
5. RRL Oc 12 A Newly Evolved Methyl Cinnamate Rich Strain of Ocimum canum Sims.
6. Search for New Aroma Chemicals from genus Ocimum
7. Cultivation of Ocimum gratissimum Linn. var Clocium
8. Cultivation of Anise
9. Patchouli
10. Removal of Calamus Odour from Patchouli Oil
11. Propagation of Patchouli (Pogostemon Cablin Benth.)
12. Patchouli Root Knot Problem and Control
13. Alponia Galanga
15. Curcuma Longa
16. Cuminum Cyminum, Linn.
17. Cyperus Rotundus
18. Hibiscus Rosa Sinensis, Linn.
19. Piper Nigrum
20. Pomegranate
21. Ricinus Communis Linn.
22. Common Elder
23. Tamarind Tree
24. Woodfordia Fruticosa, Vurz.
25. Angelica (Angelica Archangelica)
26. Sandalwood Oil Substitutes A Review
27. Native Jasmines of India
28. Screening of Flowers of Jasminum Species for Indole
29. Production Economics of Jasmine Concrete
30. The Production and Perfume Potential of Jasminum Collections
31. New Compounds of Value in Perfumery and Flavour Industry from Carene
32. Citral Containing Cymbopogon Species
33. Cedrus Oil A Promising Antifungal Agent
34. Terpenes and Coumarins from the Seeds of Peucedanum Dhana Ham. Seeds
35. Essential Oils of Cinnamomum Species
36. Jamrosa a New Geraniol Rich Cymbopogon
37. 9 Aristolen 1 alpha ol and l(10) Aristolen 2 one from Nardostachys Jatamansi DC
38. Comparison of Chemical Composition of Pepper and Pepper Leaf Oil
39. Chemical Modification of Turmeric Oil to More Value Added Products
40. Rectification of Benzene Extract A Simple Method for Extracting Sandal Oil in Higher Yield
41. Palmarosa Oil Grass for Higher Yield of Oil and Its Quality Under Cultivation
42. Effect of Harvest Management on the Yield of Essential Oil Content and Flavour of Kala Zira (Carum bulbocastanum W. Koch) Seed.
43. Essential Oil from Cymbopogon Olivieri (Boiss. C. B.) Bor.
44. Chromatographic Separation of Alpha and Beta Santalenes
45. The Rose Fragrance
46. Breeding of a New Type of Ocimum Gratissimum for Eugenol Rich Essential Oil
47. Breeding for High Essential Oil Content in Khas (Vetiveria zizanioides) Roots
48. Ocimum Sanctum for High Oil and Eugenol Content
49. Essential Oil of Artemisia pallens Wall (Davana)
50. Essential Oil from the Seeds of Anethum graveolens Linn. raised at Lucknow
51. Terpenoids from Palmarosa Grass (Cymbopogon martini var. motia)
52. Effect of Fertilizer Treatments on Yield and Economics of Cultivation of Mentha, Citronella and Palmarosa
53. Oil Content and Its Composition at Different Stages of Growth in Ocimum Sanctum Linn.
54. Weed Control in the First and Second Cutting of Japanese Mint (Mentha Arvensis L.)
55. The Chemistry of Mint Flavour
56. Ozonolysis Studies on Phenolic Constituents from Clocimum Oil
57. Natural Isolates & Reconstituted Essential Oils
58. Some Aspects of Longifolene Chemistry
59. Alpha Pinene Derivatives
60. Biologically Active Compounds from Turpentine Oil
61. Pseticides From Turpentine Oil
62. Blending Aspects of Perfumes with Turpentine Constituents
63. Insecticides Based on Turpentine
64. Promising Aromatic Plants of Industrial Value from North east India
65. Traditional Aromatic Incense and Insect Repellent Plants of Uttar Pradesh Himalaya
66. The Status of Essential Oil Bearing Plants in Uttarakhand (U.P.) India
67. Folk Medicinal Uses of Indigenous Aromatic Plants in Nepal
68. Traditional Uses of Selected Aromatic Plants of Bhutan and their Cultivation Prospects

Sample Chapter:
Removal of Calamus Odour from Patchouli Oil

INTRODUCTION
During distillation of cured leaves of four different strains of patchouli namely Java, Johore, Indonesian and Malaysian, it was observed that the oil obtained from Java strain, gave calamus odour which is not desirable for Patchouli oil as it masks true Patchouli odour. The presence of calamus odour in patchouli leaves (Java strain) and it's removal by strong fermentation has been reported. The present study describes an approach for the removal of calamus odour by the distillation method since the oil obtained from strongly fermented leaves still had the calamus odour.

MATERIALS AND METHODS
Leaf samples for distillation of oil were collected from about six month old plants of above strains of Patchouli (Pogostemon patchouli Pellet), maintained at the experimental plots of the Indian Institute of Horticultural Research, Hessaraghatta.

Twigs containing first four to five pairs of leaves were harvested during morning hours. Leaves were stripped off the twigs and were shade dried in the laboratory for about a week. During drying the leaves were turned frequently to ensure uniform drying. After the leaves had dried, they were packed and stored in paper bags.

For fermentation, the leaves from Java strain, after stripping from the twigs were heaped and allowed to dry and were not turned frequently. 100 g of dried leaves were distilled in a clevenger apparatus for 8 hours and the percentage of oil in each case was recorded (in triplicate).

In another set of experiment, during distillation of the dried leaves oil fractions were collected separately at one hour interval upto 8 hours. The oil obtained from each strain and also the eight fractions from each strain were tested for calamus odour by comparison with Acorus calamus oil. Also the oils were tested for the presence of b asarone by TLC method, since it is reported that the calamus odour is apparently due to b asarone. The percentage of b-asarone in Patchouli oil was estimated by the method of Chopra.

RESULTS AND DISCUSSION
The yield of oil and asarone content of different strains of unfermented and strongly fermented leaves of Java strain of patchouli are given in the table 1. Marked differences were observed in the essential oil content among the four strains; leaves from Malaysian strain, recorded the highest oil content (3.4%) and that from Java strain lowest (1.2%). Strongly fermented leaves of Java strain recorded higher oil content (1.8%) compared to unfermented leaves (1.2%).

Table 1
Essential Oil and b-asarone Content of Patchouli (Pogostemon Patchouli Pellet)

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Strain</th>
<th>Essential oil content ml/100g.(%)</th>
<th>Calamus odour</th>
<th>b-asarone mgl 100 ml of oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Java</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Unfermented leaves</td>
<td>1.2</td>
<td>Present</td>
<td>9.8</td>
</tr>
<tr>
<td>Fermented leaves</td>
<td>1.8</td>
<td>Present</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Johore</td>
<td>3.0</td>
<td>Not Present</td>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>
It is clear from the table that the oil obtained by distillation of unfermented and strongly fermented leaves of Java strain has calamus odour. The calamus odour could not be detected in the oil from other strains. The presence of b-asarone could be detected in the oil from Java strain and not in the oil obtained from other strains. While the b-asarone content was highest in the oil from unfermented leaves of Java strain (9.8%) and that from fermented leaves was lowest (2.3%).

Among the eight fractions of patchouli oil obtained by the distillation of fermented and unfermented leaves of Java strain collected at hourly intervals, the calamus odour and b-asarone could be detected only in the first fraction and not in the latter fractions indicating that the b-asarone was remove during the first hour of distillation.

Recent investigations have revealed carcinogenic properties o b-asarone (Cis, 2, 4, 5-trimethoxy, 1-propenyl benzene). The Food and drug Administration Department of USA has prohibited the use of calamus in any form (root, extract or oil). Also the presence of b-asarone masks the true odour of patchouli oil. In the light of above findings we recommended the rejection of the oil fraction obtained during first hour distillation of Patchouli leaves (Java strain which contains b-asarone in order to obtain Patchouli oil free from calamus odour.

NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes varies technology books, directory, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureau, consultants and consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595
Email: npcs.el@gmail.com ,info@entrepreneurindia.co
Website: www.entrepreneurIndia.co