<table>
<thead>
<tr>
<th>Code:</th>
<th>ENI177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format:</td>
<td>Paperback</td>
</tr>
<tr>
<td>Indian Price:</td>
<td>1275</td>
</tr>
<tr>
<td>US Price:</td>
<td>125</td>
</tr>
<tr>
<td>Pages:</td>
<td>544</td>
</tr>
<tr>
<td>ISBN:</td>
<td>8178330067</td>
</tr>
<tr>
<td>Publisher:</td>
<td>Pacific Business Press Inc.</td>
</tr>
</tbody>
</table>
Although many natural materials were used in the past by man, answering his instinctive urges to prevent heat loss from or entry into his dwellings, no material in modern technology has satisfied the all around requirements as has fiber Glass. Fiber glass, optical glass and reinforced plastics have important applications and uses in the making of various products. Fiberglass is a lightweight, extremely strong, and robust material. Although strength properties are somewhat lower than carbon fiber and it is less stiff, the material is typically far less brittle, and the raw materials are much less expensive. Its bulk strength and weight properties are also very favorable when compared to metals, and it can be easily formed using molding processes. Fibre glass behaves as a thermal insulation because of its entrapment of small cells of air, and prevention of movement of the air in those cells. In acoustical applications, fibre glass presents to advancing sound waves a myriad of small anechoic chambers which reflect the sound inward from many diverse surfaces until it becomes blotted out. Optical glass is a high glass material that has been seen specifically formulated to possess certain desirable characteristics that effect the propagation of light. The two primary parameters that define the basic types of optical glass are its refractive index and its dispersion. Transportation on wheel is of special significance to the reinforced plastics industry on a number of counts. Suppliers of reinforced plastics parts are often called upon to furnish prototypes of products being considered for auto, truck and bus applications. Performance and quality demands on materials used in aerospace vehicles have given rise to many plastics developments and have kept profits in the plastics industry at a higher level than those in other major markets. Some of the fundamentals of the book are fibres based on natural polymers: fibres based on synthetic polymers, fibre glass blown wool or insulation products and their applications, fibre glass in wall construction for reduced sound transmission, ceramic fibre papers, ceramic fibre textiles, commercial polymerization processes, continuous filament fibre forming methods, marine applications, reinforced plastics for transportation on wheels, plastics in aircraft and aerospace, structural laminate bag molding process, reinforced molding compounds, filament winding, etc.

The present book contains processes and other valuable information for fiber glass, optical glass and reinforced plastics. This is very resourceful book for entrepreneurs, technocrats, institutions, researches etc.

Content:
1. INTRODUCTION
Product and its applications
Man Made Fibres : An overview
History of man made fibres-world view
Fibres Based on Natural Polymers:
Fibres based on Synthetic Polymers
History of man made fibres Indian scene

2. FIBRE GLASS BLOWN WOOL OR INSULATION PRODUCTS AND THEIR APPLICATIONS

Introduction-parameters and test methods
Chemical Composition
Fibre Diameter
Binders
Thickness and Density
Percent shot
Percent Recovery
Other properties
Building Insulation
Thermal insulation-Homes
Heat loss data and calculations
Thermal insulation-Metal Buildings
Blanket insulation
Rigid insulation board
Engineered systems for increased thermal performance
Insulation of Mobile Homes, Recreational Vehicles, and Packaged Housing
Acoustical insulation for buildings
Thermal-Acoustical Batting
Fibre Glass in Wall Construction for Reduced Sound Transmission
Thermal-Acoustical insulation or improvement of existing construction
Additional insulation for acoustical ceilings
Acoustical ceiling materials
Materials
Dimensions and suspending systems
Aesthetic appearance: Facings, configurations, contours
Light reflectance
Acoustical ratings
Thermal properties of ceiling components
Integrated systems
The open office
Industrial Noise Abatement
Pipe and air handling insulations
Pipe insulation
History and Evaluation
Manufacture
Properties and Performance
General properties
Specific properties
Applicable specifications
Insulation for Air-Handling Systems and Ducting
Introduction
External Duct insulation
Internal Duct insulation
Faced insulation for duct wrapping
Fabricated Fibre Glass duct
Appliance and equipment insulations
Introduction
Appliance insulation
Forms available
Product properties
Miscellaneous
Equipment insulation
Standard roll-type insulation
Dual-Density insulation
Mechanically Bonded Mats
Thermal insulating Wool
Mineral Fibre Board insulation
Double Mesh-Faced Insulation
Metal-Jacketed Equipment insulation
Miscellaneous
Insulation for various transportation modes
Automotive market
Automotive insulation-Topliners
Automotive insulation-Handliners
Automotive insulation-Molded engine housing
Insulation for Vans
Automotive insulation-Miscellaneous components
Summary
Marine Products
Navy Hullboard
Marine Equipment insulation
Felted Mineral
Unbonded Mats or Batting
Flotation wool
Aircraft and aerospace insulation's
Introduction
Aircraft Frame insulation
Reusable surface insulation for orbiting space vehicles
High temperature insulation : Refractory Fibres
Introduction
Bulk Fibres
Felts, Blankets, Boards
Ceramic Fibre papers
Ceramic Fibre Textiles
Vacuum Forming Social Shapes
Mixes
Tamping Mixes
Composite insulation for space firings and launchings.
Reinforcement of Zirconia and Like foams.
Filtration
Introduction
Condition of Air requiring filtration
Properties of Glass Fibre as an Air Filter Medium
Understanding Air-filtration Technology
Size of inner diameter
Length
Wall thickness
Densities and interleaving
Binder content
Grooving
Fibre diameter
Advantages of Fibre glass in filtration of liquids
Testing liquid filtration media
Degree or fineness required
Amount of material to be removed and at what rate
Overall cost
Applications and performance
Paints, varnishes and solvents
Photography processing
Underground water flooding
EDM (Electrical Discharge Machining)
Filtration of Hydraulic oil
Filtration of swimming pool water
Absolute liquid filtration
Filtration of Jet Fuel and the Like
Fibre Glass Mat and Web products
Introduction
Glass Fibre paper
Shingles and roofing mats
Shingles
Built up Roofing
Industrial Bonded mats
Pipeline Protection
Roadbed protection
Drain-Tile protection
Backing for floor tile carpeting and wall covering
Battery retainer mats
Separator sheets for small batteries
Laminated battery separator mats for larger batteries
Verd and surfacing mats

3 MANUFACTURING PROCESSES
General
Factors responsible for polymerization
Co-polymer composition
Neutral commoners
Ionic commoners
Molecular weight
Catalyst preparation
Process parameters
Polymerization process
General
Bulk Polymerization
Aqueous dispersion/suspension
Emulsion polymerization
Solution Polymerization
Commercial polymerization processes
Processing and spinning
General
Solution dope preparations
Spinning processes
Wet spinning
Dry spinning
Commercial spinning process
Comparison of dry-wet spinning routes
Special spinning processes
Special Fibres
Porous fibres
Dyning of acrylic fibres
Pollution control in acroylic fibre plant
Raw materials
Acrylonitrile
Methyl Acrylate and Vinyl Acetate
Methyl acrylate
Vinyl acetate
Ionic co-monomers
Solvents
Dimethyl formamide
Dimethyl acetamide
Nitric acid
Major capital equipment
Suspension polymerization parts
Solution Polymerization parts
Dry spinning parts

4 CONTINUOUS FILAMENT FIBRE FORMING METHODS
Introduction
Marble melt process
Direct-melt process
The stricke and processes
Fibre production from ceramic crucibles
Metal coated glass Fibres
Staple Fibre or sliver
Production of Fibre optic elements
Extrusion fusion method

5 PRODUCT APPLICATION
Optical glass
Definition
Types of optical glass
Internal quality grades
Optical Fibre
Types of Optical Fibre
Application Profile
Optical glass
Optical Fibre

6 GLOBAL TECHNOLOGY TRENDS
Glass fabrication
Melting
Continuous process
Other emerging fabrication methods
Sol-gel method
Vapour deposition method
New Material compositions
Environmental friendly materials
IR materials
UV Transmission materials
Super flints
Artificial Crystal materials
Ophthalmic materials
Component production
Machining
Gradient index materials
Optical fibres
Material status
Optical fibre fabrication
Fused quart and synthetic fused silica tubes/rods
Perform fabrication
Fibre drawing and coating processes
Furnace designs
Fibre diameter measurement and control
Fibre coatings
High speed drawing and coating
Fibre opto electronic devices and coupling
Technology status India
Optical glass
Ophthalmic glasses
BOGL
Other Glasses at R & D states
Emerging technology trends

7TECHNOLOGY EVALUATION
Optical fibre
Application viability
Manufacturing Viability
Preform Fabrication
Fibre drawing
Furnance Designs

8MARINE APPLICATIONS
Introduction
Marine structural laminates
Resin systems
Reinforcements
Production processes
Laminated Materials
Response to marine environment
Effect of extended water exposure on static properties
Effect of water under pressure
Recovery of properties of Drying
Effect of water on Long terms loading properties
Weathering effects
Biological attack- foulting
Design of marine structures
Applications
Boat Construction
Fabrication processes
Fairings and Housings
Subnatine fairwaters
Outer Hull structures
Shipboard structures
Tanks
Structure sonar Domes
Floats and Buoys
Protective Coatings
Current and future developments
Large surface slips
Naval construction
United Kingdom program
US program
Deep submergence vehicles
Properties of competitive
Effects of operational conditions on properties
Design concept
Ring stiffened cylinder
Sandwich construction
Hollow glass materials
Other configurations
Current Research
Summation concluding remarks

9 REINFORCED PLASTICS FOR TRANSPORTATION ON WHEELS
Introduction
Production versus materials costs
FRP properties asc related to transportation
What reinforced plastics to use-where and why
Low-or-No-Pressure
Matched Metal Die Molding
Contains strand mat
Performs
Sheet molding compound
Bulk molding compound (Premix)
Resins and reinforcements
The cross over or break even point
Improved, mechanized, automated equipment
Mechanization not enough
Improved equipment
Low cost high quality auto and truck finishes
Casers in point
Mach fender Hood assemblies
Falcon window frame moldings
Pressure-molded reinforced plastic reefer panels
GMC wheelhouse
International fan shrouds and grille frame

10 PLASTICS IN AIRCRAFT AND AEROSPACE
Introduction
Aircraft
Progress
Applications
Plastic-ceramic Armor
Structural and Nonstructural parts
The all-plastics airplane
Costs versus Fabrication
Changing Environment
Aerospace
Introduction
Applications
Fibres
Nonwoven structures
Whiskers
Matrix
Re-entry vehicle
Lonizing Radiation
Effects of Vacuum
Use of advanced composites in spacecraft
Material requirements
Outguessing studies for Lunar Module
Conclusions

11 HAND LAY-UP TECHNIQUES
A simple hand lay-up
A complex hand lay-up
Drape molding
Spray-up
Wet lay-up low compression molding
Moldless lay-ups
Direct lay-ups or one-shot techniques

12 MATCHED DIE MOLDING-FABRIC, MAT AND PREFORM
Introduction
Definitions
Scope
Molding considerations
Mat materials for molding
Continuous Fibre mats
Mold taper for matched molds
Chopped glass performs
Directed Fibre perform process
Wet slurry process
Preform screens
Preform binders
Molding with fabrics
Vacuum injection molding
Displacement of No pressure matched mold molding
Flexible plunger molding
14 REINFORCED MOLDING COMPOUNDS

Definition
History
Premix
Sheet molding compound (SMC)
Properties
Applications
Materials
Resin
Reinforcements
Fillers
Curing Agents and inhibitors
Formulation
Ingredients
Premix
Compounding
Facility and equipment requirements
Sheet Molding Compound
Molding
Mold Construction
Release and Ejection of parts form the mold
Molding presses
Design

15 FILAMENT WINDING
Introduction
Basic material for windings
Reinforcements
Resin System
The winding process
Head counters
Mandrels
Behaviour of filament wound composites
Netting analysis
Filament winding machines
Micromechanics and micromechanics
Test methods
Composite Mechanical Properties
Summary

16 Continuous production methods

17 Ablation
Analysis
History
Applications
Material characteristics
Environmental effects
Pyrolyzed and graphitized plastics
Modified phenolic ablators

Sample Chapter:
FIBRE GLASS BLOWN WOOL OR INSULATION PRODUCTS AND THEIR APPLICATIONS

INTRODUCTION-PARAMETERS AND TEST METHODS

Fibre glass behaves as a thermal insulation because of its entrapment of small "cells" of air, and prevention of movement of the air in those cells. In acoustical applications, fibre glass presents to advancing sound waves a myriad of small anechoic chambers which reflect the sound inward from many diverse surfaces until it becomes blotted out. In filtration, fibre glass attracts particles in an air or a liquid stream, preventing their passage and affecting their separation from the stream. These and many other applications for fibre glass and similar materials are possible because of certain basic technological characteristics briefly described as follows.

Chemical Composition

As discussed, glass melting is possible because of mutual solution at high temperature of a specific, limited group of materials known as glass-forming oxides. Such factors as ease of melting, rapid rate of bubble release from the melt, long working range, and facility of fibreization are important. In the room-temperature condition for end-use application, the fibre composition should possess good chemical durability and resistance to water attack because of the much larger surface area exposed. It should also accept binder properly, should have a high mechanical strength and lack of friability. Important test parameters for evaluating and controlling glass compositions are liquidus temperature (point of initial crystal formation out of the melt upon cooling), softening point (temperature at which glass, a thermoplastic, softens and flows under its own weight), density (weight per unit volume determined after controlled thermal history or annealing), rate of flow at the fibre forming temperature (a viscosity test), and seed count (either entrained or dissolved gases being released or incomplete melting). Naturally, chemical analysis by any of several reliable methods is essential for control of both raw glass batch materials and finished melted glass. Periodically it is also advisable to evaluate the finished glass for its chemical durability. This is done by measuring weight loss after exposure of fibres of a known, closely controlled filament diameter to water and to acids and bases of a predetermined normality.

Table 1: Formulation for Insulation-Type Glasses

<table>
<thead>
<tr>
<th></th>
<th>Formula for typical mineral or slag wool</th>
<th>Typical fibre glass insulation composition</th>
<th>Typical high-temperature fibre composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>50</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>Al2O3</td>
<td>10</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>1</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>CaO</td>
<td>25</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>MgO</td>
<td>14</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Na2O</td>
<td>-</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>K2O</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Fibre Diameter
This is the important basic factor as regards specific performance for fibre glass and associated materials, since almost all major end-use behaviour is determined by fibre diameter. Generally product cost increases proportionately with the necessity to create finer filament diameters. The finer-fibred products will do most of the things that those with coarser fibres will do plus more. Hence end-use requirements should be carefully assessed— if only cold cuts are required, it is not necessary to pay for prime-grade steak.

Table 2: Filament Diameter Conversion Chart

<table>
<thead>
<tr>
<th>INCHES</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAA</td>
<td>.000002</td>
<td>.000008</td>
</tr>
<tr>
<td>AAAA</td>
<td>.000008</td>
<td>.00002</td>
</tr>
<tr>
<td>AAA</td>
<td>.00002</td>
<td>.00003</td>
</tr>
<tr>
<td>AA</td>
<td>.00003</td>
<td>.00006</td>
</tr>
<tr>
<td>A</td>
<td>.00006</td>
<td>.00010</td>
</tr>
<tr>
<td>B</td>
<td>.00010[t/d]</td>
<td>.00015</td>
</tr>
<tr>
<td>C</td>
<td>.00015</td>
<td>.00020</td>
</tr>
<tr>
<td>D</td>
<td>.00020</td>
<td>.00025</td>
</tr>
<tr>
<td>E</td>
<td>.00025</td>
<td>.00030</td>
</tr>
<tr>
<td>F</td>
<td>.00030</td>
<td>.00035</td>
</tr>
<tr>
<td>G</td>
<td>.00035</td>
<td>.00040</td>
</tr>
<tr>
<td>H</td>
<td>.00040</td>
<td>.00045</td>
</tr>
<tr>
<td>J</td>
<td>.00045</td>
<td>.00050</td>
</tr>
<tr>
<td>K</td>
<td>.00050</td>
<td>.00055</td>
</tr>
<tr>
<td>L</td>
<td>.00055</td>
<td>.00060</td>
</tr>
<tr>
<td>M</td>
<td>.00060</td>
<td>.00065</td>
</tr>
<tr>
<td>N</td>
<td>.00065</td>
<td>.00070</td>
</tr>
<tr>
<td>P</td>
<td>.00070</td>
<td>.00075</td>
</tr>
<tr>
<td>Q</td>
<td>.00075</td>
<td>.00080</td>
</tr>
<tr>
<td>R</td>
<td>.00080</td>
<td>.00085</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>S</td>
<td>.00085</td>
<td>.00090</td>
</tr>
<tr>
<td>T</td>
<td>.00090</td>
<td>.00095</td>
</tr>
<tr>
<td>U</td>
<td>.00095</td>
<td>.00100</td>
</tr>
</tbody>
</table>

MICRONS

<table>
<thead>
<tr>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.20</td>
</tr>
<tr>
<td>.20</td>
<td>.50</td>
</tr>
<tr>
<td>.51</td>
<td>.76</td>
</tr>
<tr>
<td>.76</td>
<td>1.52</td>
</tr>
<tr>
<td>1.52</td>
<td>2.54</td>
</tr>
<tr>
<td>2.54</td>
<td>3.81</td>
</tr>
<tr>
<td>3.81</td>
<td>5.08</td>
</tr>
<tr>
<td>5.08</td>
<td>6.35</td>
</tr>
<tr>
<td>6.35</td>
<td>7.62</td>
</tr>
<tr>
<td>7.62</td>
<td>8.89</td>
</tr>
<tr>
<td>8.89</td>
<td>10.12</td>
</tr>
<tr>
<td>10.12</td>
<td>11.43</td>
</tr>
<tr>
<td>11.43</td>
<td>12.70</td>
</tr>
<tr>
<td>12.70</td>
<td>13.97</td>
</tr>
<tr>
<td>13.97</td>
<td>15.24</td>
</tr>
<tr>
<td>15.24</td>
<td>16.51</td>
</tr>
<tr>
<td>16.51</td>
<td>17.78</td>
</tr>
<tr>
<td>17.78</td>
<td>19.05</td>
</tr>
<tr>
<td>19.05</td>
<td>20.32</td>
</tr>
<tr>
<td>20.32</td>
<td>21.59</td>
</tr>
<tr>
<td>21.59</td>
<td>22.86</td>
</tr>
</tbody>
</table>
Filament diameters and ranges applicable to all fibre glass production are presented in Table 2. In quality control of fibre sizes for a blown fibre glass production operation, diameters are measured by resistance to air flow using a testing device developed by the Sheffield Micronaire Division of Bendix Corporation. Originally intended for evaluating cotton, this device may be recalibrated for glass fibres. Small standard cylinders containing a weighed mass of fibres of known diameter and range are used to set or produce one specific air flow rate in the test unit. Following, a weighed portion of an unknown fibre sample is loosely packed into a likesized test cylinder, inserted, and its resistance to air flow measured. The mean fibre diameter of the test sample is smaller or greater than the control standard depending upon whether the sample offers, respectively, more or less resistance to the flow of air.

One difficulty with this measuring system is that the extremes, or degree of fibre diameter distribution under and over the nominal value (3-limits) can not be accurately determined. Nevertheless the method has provided the industry with a good, practical, and duplicatable control of fibre diameter.

Diameters down to 1 m may also be measured optically at 1,000 diameters using an accurate projection microscope with calibrated screen. This system is more laborious, required excellent equipment and precise operator technique, but provides extremely accurate results.

Binders

Raw glass fibre in any form, blown bulk or continuous, is brash and easily fragmentized. This is because self-abrasion induced by any kind of motion or rubbing action causes surface defects. These in turn reduce flexural, tensile, and other mechanical strength parameters. The adage is also true with fibres as with other forms of glass that glass is only as strong as its surface.

Consequently, a family of various types of "binders" for mineral and glass wool products has been developed. Applied from 5 to 25 wt% depending upon application, binders are based mostly upon phenol-formaldehyde resins for bonding; they also are formulated to include melamine resins, silicone compounds for water repellency, soluble or emulsified oils for lubrication, wetting agents for control of surface tension, and extenders or stabilizers.

The phenol-formaldehyde resins used are of the strong-base resole (one-step) type, and are water-soluble with a specified dilutability or tolerance of up to 25 volumes of water. Fire-retardant additives are usually reacted in the resin formulation. The resins must be refrigerated prior to use but have fairly long-term (24 hr) stability in the mixed-binder state. The phenolics cure (polymerize) on the glass by chemical action induced by heat (350 to 500 °F in the wool; up to 700 °F ambient in the curing ovens). Resin age, pH, percent solids, and degree of cleanliness are important factors in cure.

In the binder formulations used, the end results justify the care and difficulties required in handling. When sprayed on immediately after fibreization or attenuation, the resin accumulates in droplets around the fibres, reaching fibre junctures or simply flattening out along the fibre. Hence both protection against abrasion and resiliency for the final product are provided. The deposition and flattening-out of resin droplets along fibre surfaces, and also accumulations at junctures of two or more fibres are clearly visible in the SEM photomicrograph.

Raw phenolic resins may be tested for cure temperature and time on a standard cure plate. Degree of cure of resin applied to glass wool products may be evaluated by colour (light or pinkish tan-probable undercure, unless artificially coloured; dark tan to brown-good cure), by acetone extration, water absorption, or degree of thickness recovery of the product after prolonged compression. Silicone are evaluated by surface
The amount of binder present is a valuable control parameter and is determined by ignition at 1050°F of a dry, cured resin-glass sample and then calculating the percent weight loss.

Thickness and Density

These two parameters are so closely interrelated that, in the manufacturing process, a change in one invariably produces a compensating modification in the other. If a machine is producing at 1 in. thickness and 1 lb/cu ft density, and the thickness is doubled to 2 in., the density per inch of thickness would be halved. Hence, the quantity of fibre input to the machine must be doubled to maintain the product at 1 lb density. Since a near-uniform fibre production rate is desirable, the required gain in the fibre input per unit area is accomplished by halving the machine speed, thereby permitting twice as much fibre to accumulate.

In the manufacture of wool fibre, thickness is usually controlled by raising or lowering a set of "flights" or flat semented elements on a chain drive which contact and compress the top surface. These move at the same speed as the bottom or collecting open-mesh conveyor. The flights are also constructed of an expanded metal or other openmesh material to permit passage of heated air in the forced-draft curing oven.

Ultimate or specified thickness values of glass fibre and associated wool products are determined by the Gustin-Bacon "measurematic" null-balance device. In this unit the pressure of only a 3g weight (to depress the few protruding surface fibre) is exerted by a plate which contacts the top of the test sample.

Thicknesses vary in fibre glass end products from "in. to as much as 8 in. The accompanying density in blown fibre glass wool products is determined solely by weight of a sample 1 sq ft in area. Density may be made to vary from 1/2 lb to as much as 7 lb/cu ft in some board products. The upper limit on the flexible roll goods is approximately 2 1/2 lb/cu ft.

Hence it can be seen that many combinations of wool thickness and density are possible. Most product applications are based upon the best combination of the two to fulfill requirements of thermal, acoustical, or other service with performance balanced against cost. The close and necessary relationship between thickness and density will become more evident in the ensuing descriptions of individual products and their performance. (Fibre glass product density should not be confused with glass density mentioned earlier. Glass density refers to the factor of increase of the solid glass substance over the weight of an equivalent volume of water taken as unity.)

Percent Shot

As indicated, some of the processes generate a larger percentage of glassy beads or "shot" than others. The shot is often mobile, that is, not attached or adhered to adjoining fibres. Hence it may be removed by mechanical manipulation of a sample and weighed as a quality determination.

Percent Recovery

The degree of recovery in insulation or wool products relates directly to the thickness which the manufacturer guarantees in his finished product specifications. The specifications for the product you want to purchase must be met under any and all conditions.

An austere condition exits in manufacture and packaging of either flat or roll-type insulation products. Unfortunately, they are usually compressed to conserve shipping space.

It would be most disconcerting to allow a 3 in. construction space for insulation, and when the material arrived for installation, find that it filled only a portion of the allotted space. In such an instance, naturally, the thermal efficiency and resistance to heat flow would be different than that originally designed for the building. Therefore, the industry sets and maintains rigid standards for recovery of the products to specified values.

The percent thickness recovery is influenced by the following: the original flight setting (usually original production thicknesses are slightly over specification); thickness itself (greater thicknesses generally have
lower percent recovery); density (lower density-lower recovery); tightness of compression, rollup, etc., in
packaging for shipment; type, age, formulation, and degree of cure of the bonding resin; and degree of
relative humidity in the storage area (packaged insulation should be sealed inside non-moisture-transferring
membranes).

Other Properties
Other functions of fibre glass and related mineral wool products such as resistance to heat transmission
(thermal insulation), acoustical or sound absorption, propensity as a filtration medium, and others will be
detailed in the ensuing discussions of specific product applications and performances.

BUILDING INSULATION

Thermal Insulation-Homes
Insulation of homes against heat loss (winter) and heat gain (summer) probably represents the largest
single usage for fibre glass and mineral wool products. Many different areas of the home may be thermally
protected: ceilings, side walls, perimeters of slabs, floors, etc. Not only are many different types of available
insulating materials used, but the way various components perform in combination must be taken into
consideration in analyzing for the complete insulated structure, either in retrofitting or new construction.
An understanding of the way insulation performs should start with consideration of the basic units of heat
and related definitions.

MANUFACTURING PROCESSES

1. GENERAL
The manufacturing process can be broadly divided into two parts: polymerisation and spinning.
Polymerisation process includes copolymer composition, catalyst system, polymerisation reaction and
monomer recovery. Spinning includes solution/dope preparation, spring techniques and finishing operations
including after treatment, cutting and baling. A general process for acrylic fibre production is given in Figure
1. In the preparation of acrylic and modacrylic fibres, both polymerisation and spinning help to determine
the ultimate properties of the fibre. The polymerisation process, determines the composition and molecular
weight of the polymer and thus sets the limits on the final properties of the fibre as well as on the spinning
process.

2. FACTORS RESPONSIBLE FOR POLYMERISATION

I. Co-polymer Composition: Acrylic fibre manufacture requires acrylonitrile polymer with specific
composition. All acrylic fibres contain acrylonitrile (90-94%) and a neutral comonomer. Ionic comonomers
are used mainly to improve dyeability of acrylic fibres.

II. Neutral comonomers: Methyl acrylate and vinyl acetate, are used to increase the solubility of the
polymer in the spinning solvent and to improve the rate of diffusion of dyes into the fibre.

III. Ionic Componomers: Properties modifying monomers such as ionic monomers sodium styrene
sulphonate (SSS), sodium methallyl sulphonate (SMS) to provide supplemental dyesites and to impart
differential water sensitivity between elements in bicomponent fibres or halogen containing monomers such
as vinyl chloride, vinyl bromide and vinylidene chloride to impart flame resistance.

IV. Molecular Weight: The molecular weight of the polymer is vital since it determines the solution
properties of the polymer and rheological properties of the dope, i.e. polymer solution. The molecular
weight of the polymer must be low enough so that the polymer is readily soluble in spinning solvents, yet
high enough to give dope of moderately high viscosity. Polymers with a very high molecular weight fraction
may form insoluble microgels in the spinning solution. Fibre dyeability is dependent on molecular weight
distribution of the polymer, since most acrylic fibres derive their dyeability from sulphonate and sulphate
initiator fragments, at the polymer chain ends, the dyesite content of the fibre is inversely related to number
average molecular weight of the polymer and is sensitive to the fraction of low molecular weight polymer.
V. Catalyst Preparation: The catalysts used are normally solids (ferrous compounds) and are brought in to solution before feeding to the polymerization reactor. The preparation involves weighting of solids, charging of required quantity of de-mineralised water and agitation in a dissolver. After ensuring the correct concentration the various solutions are transferred to storage tanks from where they are metered to a polymerisation reactor at a predetermined rate.

VI. Process Parameters: Properties of the polymer, i.e. molecular weight and dye sites vary, depending on the following parameters:
- Water/monomer ratio
- SO2/persulphate ratio
- Reaction temperature
- Dwell time
- pH of the reactor slurry
- Amount of fe2+ with respect to monomer weight
- Addition of chain-stopper agent
- Agitator's rpm

These parameters are closely monitored and controlled to obtain the desired degree of polymerisation.
NIIR Project Consultancy Services (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are:

Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry. NPCS also publishes varies technology books, directory, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureau, consultants and consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, New Delhi-110007, India.
Tel: 91-11-23843955, 23845654, 23845886, +918800733955
Mobile: +91-9811043595
Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Website: www.entrepreneurIndia.co