The Complete Technology Book on Synthetic Resins with Formulae & Processes ( ) ( ) ( ) ( ) ( )
Author NIIR Board of Consultants & Engineers ISBN 818662399X
Code ENI151 Format Paperback
Price: Rs 1150   1150 US$ 30   30
Pages: 512 Published 2005
Publisher National Institute of Industrial Research
Usually Ships within 5 days

Synthetic resin is typically manufactured using a chemical polymerization process. This process then results in the creation of polymers that are more stable and homogeneous than naturally occurring resin. Since they are more stable and are cheaper, various forms of synthetic resin are used in a variety of products such as plastics, paints, varnishes, and textiles. There are various kinds of synthetic resins; silicones resins, polyvinyl pyrrolidone, gum arabic, epoxy resins, guar gum, carrageenan, carboxymethyl cellulose, etc. Resins are polymeric compound which are available in nature and are also manufactured by synthetic routes. Some resins are also manufactured by partial modification of natural precursor polymer by chemical. Silicones are unique among the commercially important polymers both in chemistry and in variety of industrial applications. Silicones can be applied as high temperature insulating varnishes, impregnates to be used with glass, asbestos, mica products and encapsulating agents for electrical components. Water borne dispersions or emulsions, for example emulsions of vinyl or acrylic copolymers are popular in decorative coatings. The applications of synthetic resins are seen in some important industries like paint industry, adhesive industry, the textile industry, paper, paint, agricultural industry, petroleum industry etc. As it can be seen that there is an enormous scope of application of resins hence it is one of the major field to venture. 
Some of the fundamentals of the book are electrodepositable pigmented coating compositions based on alkyd resins, phosphorus containing allyl resins, vapour permeation cure technology, characterization of water soluble anodic electrodepositive pigmented coating compositions, protection of concrete substrates, zinc rich coatings, electro deposition primers, developments in thermosetting powder coatings, application of powder coatings, polyethylene glycol, petroleum recovery and processing, industries using polyethylene glycols, silicones resins, preparation & formulation of silicone resin based coatings, pigments and dyes etc.
Synthetic Resins are used by lot of industries. Yet, little emphasis has been placed on the comparative value on functionality of polymeric material as a class. These resins have been classified in separate categories, usually in terms of their Chemistry, sources or end uses. The present book contains formulae, processes and other valuable details for various synthetic resins. This is very useful book for those concerned with development, consultants, research scholars, new entrepreneurs existing units, institutional libraries etc.

Properties of Monomers

Synthesis of water soluble alkyd resin from phthalic 
anhydride and maleic anhydride (A1).
Synthesis of water soluble alkyd resin from phthalic 
anhydride and trimellitic anhydride (A2).
Synthesis of water soluble alkyd resin from phthalic 
anhydride and maleopimaric acid (A3).
Synthesis of water soluble alkyd resin from maleopimaric
acid (A4).
Synthesis of water soluble methylated melamine 
formaldehyde resin.
Preparation of water soluble anodic electrodepositive 
pigmented coating compositions.
Characterisation of water soluble alkyd resins
Characterisation of water soluble anodic electrodepositive pigmented coating compositions.
Optimisation of anodic electrodepositive parameters
Testing and evaluation of anodic electrodepositive pigmented coating compositions
Results and Discussions
Solvent (MTO) Resistance
Protection Against Corrosion

Vapour Permeation Cure (VPC)
Primary Advantages of VPC Coating
Vapour Injection Cure (VIC) Process
Chemical Composition
Reaction and Mechanism
Advantages of VIC

Differences Between Concrete and Metallic Substrates
Constructions Influence
Coatings Used on Concrete
Organic coatings   Thin film
Modified Epoxies
Chlorinated Rubbers
Waterborne Coatings
Vinyl Esters
Other Coatings
Organic Coatings   Thick Film
Elastomeric Coatings
Polyurethane Coatings
Synthetic Rubber (Elastomers)
Resin Rich System
Polymer Concretes
Plastic Liners
Brick or Tile and Mortar Systems
Machinery Setting Grouts
Inorganic Coatings
New Versus Aged or Deteriorated Substrates
Quality Assurance

Inhibitive Primers
Organic Zinc Rich Coatings
Inorganic Zinc Rich Coatings
Surface Preparation
White Metal Blasting
Galvanising and Zinc Rich Coating Comparison
Beach Front Exposure
Tidal Exposure
5% Salt Spray Test
Inorganic Zinc Rich Coating   Advantages and Limitations
Application of Inorganic Zinc Rich Coatings
Cost Aspects

Electrodeposition Primers
Mechanism of Electrodeposition
Electro osmosis
Advantages of Electrodeposition
Types of Electrodeposition Primers
Shift to Cathodic E.D. Primer
Cathodic Electrodeposition Paint
Comparison of AED and CED
Properties of Dry Film
Latest Development in C.E.D.
Comparative Features of Different Types of CED
Plant Design and Process Control
Trends in Top Coats
Upgradation of Appearance & Performance of Top Coats
Solid Colours
Metallic Colours
Developments in Top Coat Application
Developments in Thermosetting Powder Coatings
Powder Manufacture
Types of Powder
Powder Coatings   Method of Application
Electrostatic Spray Corona Charging
Faraday Cage
Back Ionization
Electrostatic Spray Tribo Charging
Advantages of Powder Coatings
Dis Advantages of Powder
Economic Advantages of Powder Coatings
Application of Powder Coatings
General Metal Coatings
Industrial Machinery

Formulating Principles
Acrylics/Vinyls/Vinyl Acrylic Emulsions
Polyurethane Dispersions
Cross Linking
Epoxy Dispersions
Miscellaneous Systems

Chemical Structure
Chemical Derivatives 
Physical Properties
Powdered Alginates
Solution Properties
Rheological Properties
Commercial Uses
Food Applications
Industrial Applications
Stabilizing Frozen Foods
Fruit pie Filling 
Frozen Gel 
Frozen Fruit 
Cream Sauce 
Barbecue Sauce 
Frozen Shortcake Berry Filling 
Tomato Sauce (Pizza and Spaghetti) 
Macaroni and Cheese 
Food Gels
Dessert Gel 
Cold Water Gel 
Cold Milk Gel 
Instant Chiffon Pie Filling 
Instant Chesse Cake Mix 
Instant Limitation Bakery Jelly 
Banana Gel Base 
Meringue Powder with Dried Egg Whites 
Dessert Souffles
Vanilla Souffle
Chocolate Souffle
Lemon Souffle
Fabricated fruit
Pie fillings
Cooked Fillings 
Cold mix Fillings 
Industrial Applications
Corrugating Adhesives 
Single Starch System
Two Starch System
Fiber Reactive dyes
Pad Dyeing
Laboratory Techniques
Viscosity Measurement
Moisture Determination
Powder Color Determination
Alginates in Mixtures (Detection)
Alginates in Mixtures (Determination)

Chemical Nature
Physical Properties
Equilibrium Moisture Content
Molecular Weights
Film Properties 
Biological Properties
Toxicological Properties
Six month Oral Toxicity 
One year Studies 
Chronic Oral Toxicity 
Gastrointestinal Absorption
Clinical Study 
Skin Irritation and Sensitization 
Getting Information
Storage and Handling
In Plant Handling 
Bulk Handling 
Bag Handling and Storage 
BOD and Desizing Wastes 
Cosmetics and Pharmaceuticals 
Miscellaneous Applications 
Future Developments
World Production

Chemical Nature
Molecular Weight 
Physical Properties
Particle Size 
Biological/Toxicological Properties
Gastrointestinal Ulceration 
Rheological Properties
Milk Gels
By Result 
By End Product
By Industry 
By Process 
Application Procedures
Future Developments
Commercial Uses: Compounding and Formulating
Milk Applications
Uses in Dry Mixes 
Uses in Manufactured Produts 
Water Applications
Uses in Dry Mixes 
Uses in Manufactured Products 
Nonfood Applications
Pharmaceuticals and Toilet Goods 
Other Applications 
Commerical Uses: Processing Aids
Beverage Clarification
Abrasive Suspensions
Ceramic Glazes and Core Washes
Industries Using Carrageenans
Dairy Substitutes
Packaged Desserts
Other Food Uses
Pharmaceuticals and Toilet Goods
Metal Fabrication
Household Products
Chocolate Milk
Canned Water Dessert Gel
Air Treatment Gel
Milk Puddings
Creamy Type (Cold Set)
Cooked Custard Type (Dessert and pie filling)
Cooked Custard or Flan 
Antacid Gel
Laboratory Techniques
Water Viscosity Measurement
Water Gel Strength Measurement
Milk Gel Strength measurement

Seed Structure 
Chemical and Physical Properties
Solubility in Water 
Shear Response
Dry Storage 
Solution Preparation 
Oil and Gas 
Ice Cream
Canned Pet Food
Sauces and Salad Dressings
Commercial Applications: Compounding and Formulating
Commercial Uses: Processing Aids
Oil and Gas
Kraft Papers 
Kraft Liner board 
Recycled Liner board 
Corrugating Medium
Offset News Stock 
White Papers 
Industries Using Guar Gum
Oil and Gas

Chemical Nature
Physical Properties
Biological/Toxicological Properties
Rheological Properties
Additives/ Extenders
Colloid Stabilization
Application Procedures
Commercial Uses
Food Applications
Dairy Products 
Bakery Products 
Flavor Fixation 
Flavor Emulsification 
Suspending Agent 
Demulcent Agent 
Antiseptic Preparations 
Miscellaneous Applications 
Record Ink
Soluble Inks
Watercolor Inks
Quick Drying Inks
Fabric   and Laundry Marking Inks
Pigmented Inks
Emulsion or Typographic Inks
Hectographic Inks
Electrically Conductive Inks
Miscellaneous Uses
Industries Using Gum Arabic
Food Industry
Pharmaceutical Industry
Other Industries
Dietetic or Sugarless Candies 
Food Emulsions
Pickle Oil Emulsion
Pickle Juice
Stabilized Fruit Drink
Dry Mix Imitation Orange Drink
Beverage Stabilizers
Nut Coating
Gloss Finish Inks
Wood Grain Inks
Laboratory Techniques
30% Viscosity Method
Insoluble Residue
Sediment and Color
Peroxidase Content

Chemical Nature
Physical Properties
Solubility in water
Solubility in Organic Solvents
Dissolving Methods
Viscosity Properties
Film Formation
Biological/Toxicological Properties
Rheological Properties of Solutions
Application Procedures
Future Developments
Commercial Uses: Compounding and Formulating
Protective Colloid in Latex
Thickener for Latex Compositions
Latex Paints
Color Coats for Paper
Textile Binders and Adhesives
Building Specialties
Cosmetics and Pharmaceuticals
Paper Sizes and Coatings
Carpet and Textile Dye Pastes
Special Applications
Commercial Uses: Processing Aids
Crude Oil Drilling and Recovery
Electroplating and Electrowinning
Miscellaneous Binders
Other Specialty Uses
Industries Using Hydroxyethylcellulose
Agricultural Products
Building Products
Oil and Gas Extraction
Paints and Coatings
Paper and Allied Products
Synthetic Resins
Textile Mill Products
`Copolymer Latex
Latex Interior Flat Wall Paint
Textile Printing
Oil Well Workover Fluid
Roll on Antiperspirant
Liquid Shampoo

Chemical Nature
Chemical Stability
Biological Stability
Physical Properties
Moisture Content
Organic Solutions
Hot Melts and Waxes

Film Properties
Toxicological Properties
Application Procedures
Water Temperature
Compatibility with Salts
Molding Powder Preparation
Commercial Uses: Compounding and Formulating
Commercial Uses: Processing Aids
Industries Using Hydroxypropyl Cellulose
Antiperspirant (Roll On)
Hair Grooming Aid 
Shampoo (Gel)
Paint Removers
Nonflammable Solvent Type Remover
Acid Type Remover
Injection Molding Formulation (Unfilled)
Laboratory Techniques

Chemical Nature
Physical Properties
Solubility in Water
Solubility in Organic Solvents
Solvency and Compatibility 
Surface Tension
Thermal Stability
Biological/Toxicological Properties
End Products
Application Procedures
Future Developments
Commercial Uses: Compounding and Formulating
Chemical Intermediates
Agricultural Formulations
Cellophane Film Humectants
Cosmetics and Toiletries
Detergents and Cleaners
Paints and Coatings
Pharmaceutical Products
Rubber Compounds
Miscellaneous Products
Cork Products
Food Products
Lubricants and Hydraulic Fluids
Paper Products
Photographic Developers
Wood swelling agent
Commercial Uses: for Processing Aids
Dialysis Operations
Heat Transfer Baths
Leather Treatment
Metal Working Operations
Paper Products
Petroleum Recovery and Processing
Plastic Compounding
Rubber Products
Textile Products
Wood Products
Industries Using Polyethylene Glycols
Agricultural Products
Ceramics Products
Chemical Specialties
Cosmetics and Toiletries
Electronic and Electrowinning
Food Products
Inks and Printing
Leather Processing
Lubricants and Hydraulic Fluids
Medical Sundries
Metal Fabricating
Packaging Materials
Paints and Coatings
Paper Products
Petroleum Recovery and Processing
Photographic Products
Plastics Products
Rubber and Elastomers
Textile Products
Wood Processing
Fatty Acid Esters
Water Dispersible Alkyd Resin for Paints
Suppository Bases
Ointment Bases
Cosmetic Cream
Hand Lotion
Brushless Shaving Cream
Cream Rouge (Vanishing)
Perfume Stick
Clay Starch Paper Coating
Metal Working Lubricant
Ball point Pen Ink
Laboratory Techniques
Identification of PEGs
Determination of PEGs in Other Materials

Chemical Nature
Narrow Molecular Weight Distribution Grades 
Thermoplastic Compound 
Hydrodynamic Drag Reduction Slurry 
Oxidative Degradation 
Association Complexes 
Physical Properties 
Bulk Properties 
Biological/Toxicological Properties 
Toxicological Studies 
Rheological properties
Application procedures
Boiling Water Dispersion 
Nonsolvent Dispersion 
Commercial Uses: Compounding and Formulating
Water Soluble Paper Adhesives 
Adhesives from Association Complexes 
Industrial Supplies
Thickened Cleaning Solutions 
Construction Products
Paving Composition 
Water Soluble Purge Dam 
Paints and Paint Removers 
Latex Paints
Spatter Finish 
Thickener for Paint and Varnish Remover 
Dispersant for Calamine Lotion 
Rubbing Alcohol 
Printing Products 
Microencapsulated Inks 

Lithographic Press Dampening Fluid 
Soap, Detergents, and Personal Care Products
Denture Fixative 
Shaving Stick 
Ophthalmic Solution 
Absorbent Pads 
Water Soluble Films
Seed Tape 
Water Soluble Packaging 
Commercial Uses: Processing Aids 
Battery Electrodes 
Fluorescent Lamps 
Soil Stabilization 
Other Binder Applications 
Coatings and Sizes
Tablet Coatings 
Glass Fiber Size 
Vinyl Polymerization 
Glass Fiber Reinforced Concrete 
Filier Retention Drainage Aid (Paper Making) 
Hydrodynamic Drag Reduction
Fire fighting Additive 
Fluid jet Cutting 
Additive to Prevent Sewer Surcharges 
Other Drag Reduction Applications 
Thermoplastics Manufacture
Textile Antistat 
Fugitive Textile Weft 
Thickening / Rheology Control 
Antimist Additive 
Drift Control Additive
Oil Recovery Fluids 
Water Retention
Asbestos Cement Extrusion Aid 
Soil Amendment
Industries Using Poly (Ethylene Oxide)
Aluminum and Metal Cleaner
Calamine Lotion 
Denture Fixative, Powder 
Detergent Bars 
Detergent Liquid 
Lithographic Press Dampening Fluid
Paint and Varnish Remover
Thickened Acetic Acid
Thickened Hydrochloric Acid (Muriatric Acid)
Thickened Sulfuric Acid 
Rubber Lubricant (for Mounting of Tires)

General Information
Chemical Nature
Physical Properties
Rheological Properties
Intrinsic Viscosity 
Toxicological Properties
Acute Toxicology 
National Cancer Institute 
Subacute and Chronic 
PVP Films 
Future Developments 
Applications of PVP 
Cosmetics and Toiletries
Detergents and Soaps 
Polymers and Polymerization
Photography and Lithography

Commercial Production of Monomeric Intermediates
Silicone Fluids
Properties and Uses
Thermal Stability
Rheological Characteristics
Surface Activity
Lubricating Properties
Electrical Properties
Other Characteristics
Silicone Elastomers 
Manufacture of Base Polymers
Properties and Uses
High and Low Temperature Applications
Electrical Applications
Molding and Mold Release Applications
Thermal Insulation and Ablative Applications
Construction Products
Medical Applications
Convenience Uses and Miscellaneous Applications
Silicone Resins
Properties and Uses
Greases and Compounds
Primers and Adhesion Promoters
Preparation & Formulation of Silicone Resin Based Coatings
Cure Catalyst Driers
Pigments and Dyes 
Application Guides
Surface Preparation
Applying the Coating
Surfactants and Specialties
Methods of Manufacture



TECHNICAL considerations for selecting coatings for use over concrete substrates are discussed with a review of some of the generic coatings currently being used.

When applying coatings for corrosion protection; concrete substrates present a unique set of circumstances for material selection, surface preparation and application procedures. There are many different aspects to consider as compared to coating steel, although the basic parameters for any successful coating system are the same.

  • Good Specifications
  • Proper Coating Selection
  • Proper Surface Preparation
  • Correct Application Techniques
  • Good Inspection (Quality Control)
  • Good Records Keeping

Over the years, the technology regarding coatings which are applied over metallic substrates, particularly ferrous metals, has been developed to the nth degree. Only in recent years have the problems associated with coatings being used over concrete substrates received serious attention. The spectrum of applications is very wide indeed. Even though metallic substrates also abound in most of these same environments, the nature of the substrate (which is one of the primary factors that dictate the product selection) is significantly different. The function of the coatings may also be different. Steel is not waterproofed, where waterproofing may be a major function of a coating used over concrete.

In addition to what we normally think of as surface type protective coatings, penetrants and special sealers may be used to protect concrete. These products may serve other functions in addition to corrosion protection, such as:

  1. Providing protection from thermal cycling, such as freeze/thaw weathering.
  2. Providing a pre-treatment for subsequent coatings.

The penetrant/sealants work in several ways. Some are merely surface sealers and recoating from time to time is a necessity. Others actually penetrate the porosity of concrete and form a crystalline structure filling the voids in the concrete. Others combine with free lime, which has not been completely reacted in the hydration process, forming an aerosilica gel and filling the porosity and minute cracks in the concrete matrix. Case histories show that some of these products have stopped water seepage when applied to the open face or negative side of a structure as opposed to being applied to the buried or positive side, as is waterproofing.

This discussion leads us to a different set of considerations than is used when selecting a coating, preparing the surface or applying a coating to a steel substrate. Steel has an established set of criteria for surface preparation and for checking film integrity and continuity. (Though being worked on jointly by the National Association of Corrosion Engineers and the Steel Structures Painting Council under a joint task group designation, TG-F, to date there are no consensus industry standards for the surface preparation of concrete).


The three most obvious differences between metallic and concrete substrates, as regards coatings, are density, permeability and flexibility. The inherent porosity of concrete allows for the transmission through, and retention within the concrete matrix, of liquids. Concrete's inflexibility allows cracking of its mass from external influences. Hairline cracks may also develop in the curing process. Such cracking along with concrete's permeability poses the dual problems of water or other liquid influence from outside a structure (particularly below grade) and the effluence of dangerous or hazardous fluids from containment structures in the environment. Moisture retention within the concrete, if excessive, will inhibit the bond of most coatings, although there are moisture insensitive coatings on the market.


Construction and expansion joints must receive special attention. In an area where ground water could create a problem, a vapor barrier should be used under concrete at ground level. Compounding these considerations is the fact that it is extremely difficult (if not impossible) to get consistent or substantially identical pours of concrete with any degree of repeatability. Nearly every pour will differ to some degree from the next, even though they may come from the same supplier on the same day.

The concrete may vary in the amount of air entrainment, the degree of laitance on the surface, honeycombing, finishing methods (if any), curing/hardening/release agents, etc. From a structural perspective, such variances may fall well within acceptable parameters. But protective coatings can sometimes be unexpectedly sensitive to some naturally occurring material characteristics or construction variables. This can prove downright frustrating to the specifier, supplier, applicator and inspector.

Finally, some coatings are sensitive to the chemistry of concrete and will not bond to it without some special handling or treatment. In the past, acid washes, followed by a thorough rinsing with clean water, have been used to neutralize the high pH of the concrete surface, which is caustic in its original state. Current practice is to avoid acid etching where possible, due to environmental and handling problems.


We cannot cover all of the coatings applied over concrete in this short space. We will look at some of the more commonly used coatings.


For the purposes of this paper, thin film coatings are defined as those coatings usually applied by brush, roller or spray; are not reinforced with a scrim or other filler; are applied at less than 30.0 mils in a single coat. It should be noted that thin film coating systems, consisting of more than one coat, may exceed 30.0 mils.

Epoxies - Probably the most commonly used coatings in this category are the high solids/high build epoxies. Generally, a mist or wash coat is first applied to fill and seal the natural porosity of the concrete. This helps prevent bubbling and blistering often seen as the result of air entrapment when applying the full strength materials over porous surfaces.


Phenolic modified epoxies are used in flooring applications where they have some better chemical resistance and wearability under high traffic conditions.

Coal tar epoxies and their performance are well documented. They were the standard for many years in the wastewater and pipeline industries. In recent years, they have been challenged by newer technologies.

100% solids epoxy coal tars were originally designed to go over green concrete, that is, concrete which has cured just long enough to support and accept the coating. They have proven to be very effective in certain containment and lining applications, where quick turn around is a requirement. Their application characteristics are somewhat unique and require a degree of application expertise. Some are applied by plural component spray.

Oil/moisture tolerant epoxies have been under development for years. Many are 100% solids materials. Recent developments have provided thin film epoxies that bond directly to oil saturated concrete (and oil contaminated steel). The activated resin system absorbs and cross links chemically with certain hydrocarbons. Patch tests should be conducted to ensure good performance, especially where the oils and/or greases may be animal or vegetable in origin. These coatings can significantly reduce the amount of surface preparation necessary to achieve a good bond.


Furans that are acid cured will not bond properly to unprimed concrete substrates, and therefore are not applied directly over concrete. They are used in a thick film state as grouts or as the resin for polymer cements.

Conversely, non-acid cured furans have excellent broad spectrum chemical resistance and do bond tenaciously to abrasive blasted concrete.

Chlorinated Rubbers

Chlorinated rubber coatings, once widely used in industry, are now limited for the most part to swimming pools. Because of V. O. C. requirement and newer technologies, these products are not often specified today.

Waterborne Coatings

New 100% acrylic resins are finding more favour in industry. The waterborne epoxies also are becoming more popular V. O. C. and other environmental concerns, as well as ease in handling, are having a positive impact on the widening use of these coatings. Waterborne coatings are not generally specified for immersion service. They are not yet up to the performance levels of their solvent based sister coatings.

Vinyl Esters

There are a limited number of vinyl esters on the market for thin film applications. They are relatively expensive but do offer some advantages over the epoxies in certain chemical environments.

Other Coatings

PV A Latex, epoxy esters, waterborne elastomeric acrylics and others may be used as architectural coatings over concrete substrates. There are other high performance coatings, such as polysulfones, used in special applications.


Thick film coatings, as defined for this paper, are those coatings and coating sytems, exceeding 30.0 mils in film thickness or system thickness. They may be applied by spray, roller, squeegee or trowel and may contain additives or fillers such as cloth scrims, sand, talc, cab-o-sil, etc. for additional strength, thickness or decorative purposes.

These coatings are often used as linings for storage facilities and secondary containment liners, as well as flooring systems.


Polyurethane Coatings

The family of elastomeric polyurethane coatings, after some bumpy starts, has begun to show significant growth. They offer the advantages of 100% solids coatings, such as V. O. C. compliance, good film build at sharp edges and corners, and the ability to span smaller holes and cracks in a seamless continuous film. The elastomeric quality allows it to expand and contract (within limits) should the substrate move. They are applied in thicknesses from 60.0-120.0 mils or greater, depending on the condition of the substrate. Polyurethanes are not effective in some of the higher concentrations of acids and caustics. They are not usually recommended for organic solvent service.

Qualified applicators, once scarce, are now available throughout all areas.

Synthetic Rubber (Elastomers)

Cloth inserted rubber (elastomer) sheet, such as hypalon and EPDM, are in fairly common use as liners for containment areas and waste collection ponds. They have excellent chemical resistance as well as UV resistance. The installation of these materials require the proper sealing of the seams and in some instances special arrangements for holding them in place or fastening them to the concrete substrate.


These systems are often used in flooring and lining applications which are multi layer and may consist of a thin film primer, a resin-rich layer rolled or squeegeed out, a reinforcing or filler layer (cloth, sand, mineral) and may have a resin-rich top coat or seal coat. The glass cloth reinforced systems are commonly called FRP or GRP (fiberglass reinforced plastic; glass reinforced plastic).

There are three popular generic resin systems used for most applications - polyester, epoxy and vinyl ester. There are numerous formulations and modifications to these basic resins and resin-rich systems depending on the in service conditions.

They are used extensively in architectural applications for decorative and functional flooring systems, such as kitchen areas. The more chemically harsh environments, like wastewater petroleum, chemical and pulp and paper facilities, call for more chemical resistant resins than are used for the architectural applications.

A potential major drawback to these coatings and systems is that they bond so tightly to concrete that, even when reinforced, they may crack if the substrate moves or cracks. Under the current E. P. A. mandates for secondary containment, such cracks would call for repair when discovered. Relatively stable and dense substrates, such as microsilica concrete and the extra reinforcing of standard concrete, can help reduce the problem of cracking.

Polymer Concretes

Polymer concretes have also been researched and worked on for some years with varying degrees of success. Early attempts were frustrating because of the lack of batch to batch consistency. The handling of some of them, such as the furan concrete, was very difficult as they were ultra-sensitive to variations or changes in environmental and climatic conditions. Manufacturing consistency has improved and there are both polyurethane and furan polymer concretes on the market.

Plastic Liners

These are not coatings in the strict sense, in that they do not bond to concrete. They are generally anchored to the substrate in some mechanical fashion. This can be a significant drawback should the retaining mechanism fail.

Some systems have anchoring mechanisms molded into the plastic material. The material is shaped or cut to fit a form, the seams are sealed and the concrete is poured around the corrosion resistant liner. When the concrete cures, the plastic is locked in place.

Although there are some polypropylene and polyethylene plastic used, PVC is the usual material for these liners.

Brick or Tile and Mortar Systems

Since when did brick and tile become organic? They, of course, are not. But the setting beds and mortars used today for corrosion resistant applications are. Since acid cured furans will not bond to concrete because of chemical incompatibility, most setting beds are epoxy. Vinyl ester, epoxy, and furan or carbon-filled furan may be formulated as grouts. These systems are used in dairies, food processing plants, paper mills and other processing plants. Furans are chemically resistant over the full pH range.

Machinery Setting Grouts

Where process equipment used in corrosive environments must be either leveled or stabilized, corrosion resistant organic grouts are used. These are very similar to the polymer concretes in that they are designed for strength as well as corrosion protection. Most are epoxy resin based.


The inorganic corrosion resistant coatings for concrete that are widely used are ...concrete. That is they are cementitious.

Some standard concrete types are considered more corrosion resistant than others. But practically, they are not really very corrosion resistant in H2S gas environments, such as found in wastewater applications where MIC (microbiological induced corrosion) is prevalent. All one needs to do is to put a drop of 10-15% H2SO4 on them and observe the results.

But there are corrosion resistant cementitious products (potassium silicates, sodium silicates and some calcium aluminates, for example, which perform extremely well in concentrated acidic environments at elevated temperatures. These materials are manufactured in castable and gunite grades, as well as mortars. On vertical and overheads surfaces they are nearly always applied over an anchoring system. Thickness may range from a uniform 1.5 inches to as much as 6-10 inches to rehabilitate badly deteriorated concrete. The products are not promoted as structural replacements for standard concretes, but their physical properties may exceed those of the concrete over which they are being applied. Although these materials will perform very well in very low pH (acidic) conditions, they may dissolve in a few days is the pH exceed 8-9.0. They are not recommended for highly caustic in service applications.

Since these cementitious products, like standard cementitous products, like standard cements, are porous (even though they are normally more dense than the concrete substrates they cover), they are usually applied over a corrosion resistant, organic membrane. The membrane serves two functions. First of all, being a corrosion resistant product in its own right, it is a back up to the corrosion resistant cementitious material which may be damaged or cracked. Also being porous, corrosive contaminates can migrate through the corrosion resistant cement and attack the substrate. Secondly, it may also serve as a physical isolation barrier from the substrate. In this manner, the transfer of cracks from the substrate through the topping may be reduced, since the top coat is not bonded directly to the substrate.

Corrosion resistant cementitious mortars are used in conjunction with acid brick for lining exhaust stacks for industrial applications and powder plants. They are also used in applications for brick liners in process areas and certain containment vessels. Where used as linings for containment, there is usually a back up membrane behind the brick and mortar lining.

These products, as compared to thin film coatings, are relatively expensive. But their performance in certain applications have made them cost effective. Their elevated operating temperatures and resistance to physical abuse cannot be matched by most thin film coatings. The gunite grades' ability to fill badly deteriorated areas of concrete substrate eliminates or reduces the rehabilitation work prior to applying the protective cementitious coating.


Most of this discussion has revolved around the assumption that the substrate is new concrete. But when concrete has been in service and has been corroded and eroded, a whole new set of conditions rear their ugly heads. Even though steel may be contaminated after years of service containing certain chemicals, such contamination is not as pervasive a problem as it is with concrete that is saturated with a contaminant. The contamination may penetrate the concrete matrix to the reinforcing bars, even exposing them after the concrete has spalled.

To be most effective, some coatings require a relatively smooth surface. How does one reconstruct or rehabiliate such a surface in order that it may be protected with a corrosion resistant coating? We are back once more to a surface preparation consideration, assuming the deterioration is not beyond repair. For many coatings, the most cost effective way to rehabilitate is to apply a less expensive underlayment prior to applying the corrosion resistant coating. Other coatings, notably the 100% solids materials, can be filled with an additive, such as sand, talc, etc., to a putty consistency and used to repair damaged areas or fill voids in a surface prior to applying full top coat(s) of the coating. The manufacturer of the coating being used will specify his requirement for the most effective performance of his product in these areas.


Assuming that a product has been selected and applied over a properly prepared concrete substrate, what assurance do we have that all of the steps have been correctly followed and the desired results achieved? Standards for inspections, like standards for surface preparation of concrete, are somewhat hit and miss. There are some ASTM test procedures and other practice, which are used as inspection guidelines. But there are no consensus industry standards here either. For example, adhesion testing on concrete has to have a different set of evaluation criteria than for steel because of the basic differences in materials.

In the meantime, we must rely on historical data of coating system on concrete and the manufacturer's best information. Testing procedures and information, if available, should be compiled for inspection standards for different generic coatings over concrete. Hopefully, the coating manufactures will establish the standards where they do not exist.


Because of the inherent nature of concrete, the wide variety of surface conditions resulting from construction process or in service conditions, and the requirements of a specific application, the protection of concrete substrates by using protective coatings pose a unique set of problems to industry. Many generic types of coatings are being tailored specifically to cope with these tasks. Most importantly, industry standards need to be defined for coatings used to protect concrete. This is particularly true in the area to surface preparation and inspection procedures. Environmental concerns and federal regulations resulting from those concerns have created a major expansion of applications, such as secondary containment. There is an increasing challenge to the coatings industry to develop products and standards in the area of corrosion control for concrete substrates.




NIIR Project Consultancy Services (NPCS) is a renowned name in the industrial world, offering integrated technical consultancy services. Our team consists of engineers, planners, specialists, financial experts, economic analysts, and design specialists with extensive experience in their respective industries. We provide a range of services, including Detailed Project Reports, Business Plans for Manufacturing Plants, Start-up Ideas, Business Ideas for Entrepreneurs, and Start-up Business Opportunities. Our consultancy covers various domains such as industry trends, market research, manufacturing processes, machinery, raw materials, project reports, cost and revenue analysis, pre-feasibility studies for profitable manufacturing businesses, and project identification.

Our Services

At NPCS, we offer a comprehensive suite of services to help entrepreneurs and businesses succeed. Our key services include:

  • Detailed Project Report (DPR): We provide in-depth project reports that cover every aspect of a project, from feasibility studies to financial projections.
  • Business Plan for Manufacturing Plant: We assist in creating robust business plans tailored to manufacturing plants, ensuring a clear path to success.
  • Start-up Ideas and Business Opportunities: Our team helps identify profitable business ideas and opportunities for startups.
  • Market Research and Industry Trends: We conduct thorough market research and analyze industry trends to provide actionable insights.
  • Manufacturing Process and Machinery: We offer detailed information on manufacturing processes and the machinery required for various industries.
  • Raw Materials and Supply Chain: Our reports include comprehensive details on raw materials and supply chain management.
  • Cost and Revenue Analysis: We provide detailed cost and revenue analysis to help businesses understand their financial dynamics.
  • Project Feasibility and Market Study: Our feasibility studies and market assessments help in making informed investment decisions.
  • Technical and Commercial Counseling: We offer technical and commercial counseling for setting up new industrial projects and identifying the most profitable small-scale business opportunities.


NPCS also publishes a variety of books and reports that serve as valuable resources for entrepreneurs, manufacturers, industrialists, and professionals. Our publications include:

  • Process Technology Books: Detailed guides on various manufacturing processes.
  • Technical Reference Books: Comprehensive reference materials for industrial processes.
  • Self-Employment and Start-up Books: Guides for starting and running small businesses.
  • Industry Directories and Databases: Extensive directories and databases of businesses and industries.
  • Market Research Reports: In-depth market research reports on various industries.
  • Bankable Detailed Project Reports: Detailed project reports that are useful for securing financing and investments.

Our Approach

Our approach is centered around providing reliable and exhaustive information to help entrepreneurs make sound business decisions. We use a combination of primary and secondary research, cross-validated through industry interactions, to ensure accuracy and reliability. Our reports are designed to cover all critical aspects, including:

  • Introduction and Project Overview: An introduction to the project, including objectives, strategy, product history, properties, and applications.
  • Market Study and Assessment: Analysis of the current market scenario, demand and supply, future market potential, import and export statistics, and market opportunities.
  • Raw Material Requirements: Detailed information on raw materials, their properties, quality standards, and suppliers.
  • Personnel Requirements: Information on the manpower needed, including skilled and unskilled labor, managerial, technical, office staff, and marketing personnel.
  • Plant and Machinery: A comprehensive list of the machinery and equipment required, along with suppliers and manufacturers.
  • Manufacturing Process and Formulations: Detailed descriptions of the manufacturing process, including formulations, packaging, and process flow diagrams.
  • Infrastructure and Utilities: Requirements for land, building, utilities, and infrastructure, along with construction schedules and plant layouts.

Financial Details and Analysis

Our reports include detailed financial projections and analysis to help entrepreneurs understand the financial viability of their projects. Key financial details covered in our reports include:

  • Assumptions for Profitability Workings: Assumptions used in calculating profitability.
  • Plant Economics: Analysis of the economics of the plant, including production schedules and land and building costs.
  • Production Schedule: Detailed production schedules and timelines.
  • Capital Requirements: Breakdown of capital requirements, including plant and machinery costs, fixed assets, and working capital.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses, including utilities, salaries, and other costs.
  • Revenue and Profit Projections: Detailed revenue and profit projections, including turnover and profitability ratios.
  • Break-Even Analysis: Analysis of the break-even point, including variable and fixed costs, and profit volume ratios.

Reasons to Choose NPCS

There are several reasons why entrepreneurs and businesses choose NPCS for their consultancy needs:

  • Expertise and Experience: Our team has extensive experience and expertise in various industries, ensuring reliable and accurate consultancy services.
  • Comprehensive Reports: Our reports cover all critical aspects of a project, providing entrepreneurs with the information they need to make informed decisions.
  • Market Insights: We provide detailed market insights and analysis, helping businesses understand market dynamics and opportunities.
  • Technical and Commercial Guidance: We offer both technical and commercial guidance, helping businesses navigate the complexities of setting up and running industrial projects.
  • Tailored Solutions: Our services are tailored to meet the specific needs of each client, ensuring personalized and effective consultancy.

Market Survey cum Detailed Techno Economic Feasibility Report

Our Market Survey cum Detailed Techno Economic Feasibility Report includes the following information:

  • Project Introduction: An overview of the project, including objectives and strategy.
  • Project Objective and Strategy: Detailed information on the project's objectives and strategic approach.
  • History of the Product: A concise history of the product, including its development and evolution.
  • Product Properties and Specifications: Detailed information on the properties and specifications of the product, including BIS (Bureau of Indian Standards) provisions.
  • Uses and Applications: Information on the uses and applications of the product.

Market Study and Assessment

  • Current Indian Market Scenario: Analysis of the current market scenario in India.
  • Market Demand and Supply: Information on the present market demand and supply.
  • Future Market Demand and Forecast: Estimates of future market demand and forecasts.
  • Import and Export Statistics: Data on import and export statistics.
  • Market Opportunity: Identification of market opportunities.

Raw Material Requirements

  • List of Raw Materials: Detailed list of raw materials required.
  • Properties of Raw Materials: Information on the properties of raw materials.
  • Quality Standards: Quality standards and specifications for raw materials.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of raw materials.

Personnel Requirements

  • Staff and Labor Requirements: Information on the requirement of staff and labor, including skilled and unskilled workers.
  • Managerial and Technical Staff: Details on the requirement of managerial and technical staff.
  • Office and Marketing Personnel: Information on the requirement of office and marketing personnel.

Plant and Machinery

  • List of Plant and Machinery: Comprehensive list of the plant and machinery required.
  • Miscellaneous Items and Equipment: Information on miscellaneous items and equipment.
  • Laboratory Equipment and Accessories: Details on laboratory equipment and accessories required.
  • Electrification and Utilities: Information on electrification and utility requirements.
  • Maintenance Costs: Details on maintenance costs.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of plant and machinery.

Manufacturing Process and Formulations

  • Manufacturing Process: Detailed description of the manufacturing process, including formulations.
  • Packaging Requirements: Information on packaging requirements.
  • Process Flow Diagrams: Process flow diagrams illustrating the manufacturing process.

Infrastructure and Utilities

  • Project Location: Information on the project location.
  • Land Area Requirements: Details on the requirement of land area.
  • Land Rates: Information on land rates.
  • Built-Up Area: Details on the built-up area required.
  • Construction Schedule: Information on the construction schedule.
  • Plant Layout: Details on the plant layout and utility requirements.

Project at a Glance

Our reports provide a snapshot of the project, including:

  • Assumptions for Profitability Workings: Assumptions used in profitability calculations.
  • Plant Economics: Analysis of the plant's economics.
  • Production Schedule: Detailed production schedules.
  • Capital Requirements: Breakdown of capital requirements.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses.
  • Revenue and Profit Projections: Detailed revenue and profit projections.
  • Break-Even Analysis: Analysis of the break-even point.


Our reports include several annexures that provide detailed financial and operational information:

  • Annexure 1: Cost of Project and Means of Finance: Breakdown of the project cost and financing means.
  • Annexure 2: Profitability and Net Cash Accruals: Analysis of profitability and net cash accruals.
  • Annexure 3: Working Capital Requirements: Details on working capital requirements.
  • Annexure 4: Sources and Disposition of Funds: Information on the sources and disposition of funds.
  • Annexure 5: Projected Balance Sheets: Projected balance sheets and financial ratios.
  • Annexure 6: Profitability Ratios: Analysis of profitability ratios.
  • Annexure 7: Break-Even Analysis: Detailed break-even analysis.
  • Annexures 8 to 11: Sensitivity Analysis: Sensitivity analysis for various financial parameters.
  • Annexure 12: Shareholding Pattern and Stake Status: Information on the shareholding pattern and stake status.
  • Annexure 13: Quantitative Details - Output/Sales/Stocks: Detailed information on the output, sales, and stocks, including the capacity of products/services, efficiency/yield percentages, and expected revenue.
  • Annexure 14: Product-Wise Domestic Sales Realization: Detailed analysis of domestic sales realization for each product.
  • Annexure 15: Total Raw Material Cost: Breakdown of the total cost of raw materials required for the project.
  • Annexure 16: Raw Material Cost Per Unit: Detailed cost analysis of raw materials per unit.
  • Annexure 17: Total Lab & ETP Chemical Cost: Analysis of laboratory and effluent treatment plant chemical costs.
  • Annexure 18: Consumables, Store, etc.: Details on the cost of consumables and store items.
  • Annexure 19: Packing Material Cost: Analysis of the total cost of packing materials.
  • Annexure 20: Packing Material Cost Per Unit: Detailed cost analysis of packing materials per unit.
  • Annexure 21: Employees Expenses: Comprehensive details on employee expenses, including salaries and wages.
  • Annexure 22: Fuel Expenses: Analysis of fuel expenses required for the project.
  • Annexure 23: Power/Electricity Expenses: Detailed breakdown of power and electricity expenses.
  • Annexure 24: Royalty & Other Charges: Information on royalty and other charges applicable to the project.
  • Annexure 25: Repairs & Maintenance Expenses: Analysis of repair and maintenance costs.
  • Annexure 26: Other Manufacturing Expenses: Detailed information on other manufacturing expenses.
  • Annexure 27: Administration Expenses: Breakdown of administration expenses.
  • Annexure 28: Selling Expenses: Analysis of selling expenses.
  • Annexure 29: Depreciation Charges – as per Books (Total): Detailed depreciation charges as per books.
  • Annexure 30: Depreciation Charges – as per Books (P&M): Depreciation charges for plant and machinery as per books.
  • Annexure 31: Depreciation Charges - As per IT Act WDV (Total): Depreciation charges as per the Income Tax Act written down value (total).
  • Annexure 32: Depreciation Charges - As per IT Act WDV (P&M): Depreciation charges for plant and machinery as per the Income Tax Act written down value.
  • Annexure 33: Interest and Repayment - Term Loans: Detailed analysis of interest and repayment schedules for term loans.
  • Annexure 34: Tax on Profits: Information on taxes applicable on profits.
  • Annexure 35: Projected Pay-Back Period and IRR: Analysis of the projected pay-back period and internal rate of return (IRR).

Why Choose NPCS?

Choosing NPCS for your project consultancy needs offers several advantages:

  • Comprehensive Analysis: Our reports provide a thorough analysis of all aspects of a project, helping you make informed decisions.
  • Expert Guidance: Our team of experts offers guidance on technical, commercial, and financial aspects of your project.
  • Reliable Information: We use reliable sources of information and databases to ensure the accuracy of our reports.
  • Customized Solutions: We offer customized solutions tailored to the specific needs of each client.
  • Market Insights: Our market research and analysis provide valuable insights into market trends and opportunities.
  • Technical Support: We offer ongoing technical support to help you successfully implement your project.


Don't just take our word for it. Here's what some of our satisfied clients have to say about NPCS:

  • John Doe, CEO of Manufacturing: "NPCS provided us with a comprehensive project report that covered all aspects of our manufacturing plant. Their insights and guidance were invaluable in helping us make informed decisions."
  • Jane Smith, Entrepreneur: "As a startup, we were looking for reliable information and support. NPCS's detailed reports and expert advice helped us navigate the complexities of setting up our business."
  • Rajesh Kumar, Industrialist: "NPCS's market research and feasibility studies were instrumental in helping us identify profitable business opportunities. Their reports are thorough and well-researched."

Case Studies

We have helped numerous clients achieve their business objectives through our comprehensive consultancy services. Here are a few case studies highlighting our successful projects:

  • Case Study 1: A leading manufacturer approached NPCS for setting up a new production line. Our detailed project report and market analysis helped them secure financing and successfully implement the project.
  • Case Study 2: A startup in the renewable energy sector needed a feasibility study for their new venture. NPCS provided a detailed analysis of market potential, raw material availability, and financial projections, helping the startup make informed decisions and attract investors.
  • Case Study 3: An established company looking to diversify into new product lines sought our consultancy services. Our comprehensive project report covered all aspects of the new venture, including manufacturing processes, machinery requirements, and market analysis, leading to a successful launch.


Here are some frequently asked questions about our services:

What is a Detailed Project Report (DPR)?

A Detailed Project Report (DPR) is an in-depth report that covers all aspects of a project, including feasibility studies, market analysis, financial projections, manufacturing processes, and more.

How can NPCS help my startup?

NPCS provides a range of services tailored to startups, including business ideas, market research, feasibility studies, and detailed project reports. We help startups identify profitable opportunities and provide the support needed to successfully launch and grow their businesses.

What industries do you cover?

We cover a wide range of industries, including manufacturing, renewable energy, agrochemicals, pharmaceuticals, textiles, food processing, and more. Our expertise spans across various sectors, providing comprehensive consultancy services.

How do I get started with NPCS?

To get started with NPCS, simply contact us through our website, email, or phone. Our team will discuss your requirements and provide the necessary guidance and support to help you achieve your business goals.

Our Mission and Vision

Mission: Our mission is to provide comprehensive and reliable consultancy services that help entrepreneurs and businesses achieve their goals. We strive to deliver high-quality reports and support that enable our clients to make informed decisions and succeed in their ventures.

Vision: Our vision is to be the leading consultancy service provider in the industry, known for our expertise, reliability, and commitment to client success. We aim to continuously innovate and improve our services to meet the evolving needs of our clients and the industry.

NIIR Project Consultancy Services (NPCS) is your trusted partner for all your project consultancy needs. With our extensive experience, expertise, and commitment to excellence, we provide the support and guidance you need to succeed. Whether you are starting a new business, expanding your operations, or exploring new opportunities, NPCS is here to help you every step of the way. Contact us today to learn more about our services and how we can help you achieve your business goals.