The Complete Book on Distillation and Refining of Petroleum Products (Lubricants, Waxes and Petrochemicals) ( ) ( Best Seller ) ( ) ( ) ( )
Author NIIR Board of Consultants & Engineers ISBN 8186623973
Code ENI152 Format Paperback
Price: Rs 975   975 US$ 26   26
Pages: 496 Published 2005
Publisher National institute of industrial Research
Usually Ships within 5 days

The most dynamic industry of the century is the petroleum and petrochemicals industry. It has taken the fundamental knowledge of chemistry and chemical engineering and transformed itself from a simple processing industry for fuel and lubricants to an extremely complex chemical process industry which has branched out into synthetic rubber, plastics, fertilizers and many other fields. Petroleum (crude oil) is a mixture of different hydrocarbons. Many useful products can be made from these hydrocarbons. The fractions are separated from one another using a process called fractional distillation. This process is based on the principle that different substances boil at different temperatures. The applications of distillation in petroleum industry are quite varied. The assaying of crude oils and the evaluation many petroleum products depend on distillation. Petroleum products obtained from processes such as distillation often need supplementary purification. Refining is a process of purification of products by means of chemical process. Chemical engineering and petroleum processing have in a very real sense grown up together. Studies on fluid flow, heat transfer, distillation, absorption, and the like were undertaken and applied to wide variety of materials because of need in the petroleum processing field. The largest share of oil products is used as energy carriers: various grades of fuel oil and gasoline. Heavier (less volatile) fractions can also be used to produce asphalt, tar, paraffin wax, lubricating and other heavy oils. Refineries also produce other chemicals, some of which are used in chemical processes to produce plastics and other useful materials. Hydrogen and carbon in the form of petroleum coke may also be produced as petroleum products. Petrochemicals have a vast variety of uses. The use of petroleum hydrocarbons to make synthesis gas has made petroleum and natural gas the world main source of ammonia, the source of almost all nitrogen fertilizers. While petroleum product demand in the western world is relatively stagnant, for developing countries, particularly those in Asia, demand is booming. It is all about growing populations and their escalating need for energy.

Some of the fundamental of the book are the nature of petroleum, crude oil processing, distillation in the petroleum industry, refining of lubricating oils, petrolatum, and waxes, residue fluidized catalytic cracking, chemical thermodynamics of petroleum , benefits of biodiesel produced from vegetable oil, petroleum products used as fuel oils, manufacture of asphalt from petroleum, petroleum waxes, chlorinated waxes, synthesis gas etc.

The book presents information and data which will help oil companies, large scale users of commercial petroleum products in efficient storage, handling and utilization of these products. Different formulae, processes for the production of petroleum products are given in this book. This will be very useful book for new entrepreneurs, existing units, technocrats, researchers, institutional libraries etc.

1. Introduction
The Nature of Petroleum
Largest Energy Supplier
Constituents of Petroleum
Aliphatics, or open chain Hydrocarbons
Ring Compounds
Lesser Components

2 Crude Oil Processing 
Ideal Solutions
Real Solutions
Critical Phenomena
Chemical Dissimilarity
Ordinary Distillation
Steam Distillation
Extractive Distillation
Process Equipment
Single Stage
Plate Columns 
Differential Columns
Wetted Wall
Distillation in the Petroleum Industry
Analytical Applications
Single stage Processes
Multistage Processes
Manufacturing Applications
Primary Distillation
Process feed Preparation 
Product Fractionation
Combination Processing.

Refining by Chemical Methods
Sulfuric Acid Treating
Reactions with Hydrocarbons
Paraffinic and Naphthenic Hydrocarbons
Manner and Effects of Treating
Refining by Physical Methods
Fullers Earth (Attapulgite, Floridin, Florida Earth)
Acid activated Bentonite
Silica Gel
Commercial Applications
Separation of Classes of Hydrocarbons
Refining of Lubricating Oils, Petrolatums, and Waxes
Stabilizing Gasolines
Regeneration of Adsorbents
Solvent Refining Processes
Aromatics Recovery
Refining Lubricating Oil Stocks.
Separation of Wax
Propane Deasphalting

4. Cracking 
Catalytic Cracking 
Residue Fluidized Catalytic Cracking (RFCC or RCC)
FCC versus HCU
Thermal Reforming
Catalytic Reforming
Operating Variables

5. Chemical Thermodynamics of Petroleum 
Fundamental Relationships
The Standard Free Energy and Equilibrium
Status of Thermodynamic Data
Applications to Petroleum Processing
General Considerations
Aromatization of Paraffins and Naphthenes
Isomerization of n Butane

6. Gasoline 
Composition, Manufacture, and use of Gasoline
Volatility of Gasoline
Air Fuel Mixtures and Combustion
Phenomena of Knocking
Ethyl Alcohol as an IC Engine Fuel
Alcohols as auto fuels
Issues not in favour of Alcohol
Blending Alcohol and Gasoline

7. Diesel Fuels 
Diesel Combustion
Ignition Quality

8. Bio Diesel 
Disadvantages of Vegetable Oil as Diesel Fuel
Benefits of Biodiesel Produced from Vegetable Oil
Disadvantages of Biodiesel produced from Vegetable Oil
Biodiesel Production from various vegetable oils on 
Different Countries
Country Source of biodiesel
Economics of Biodiesel Project
Tax Incentives in Developed Countries
World Production Level of Biodiesel
Price in USA
Projected Indian Demand Scenario For Biodiesel
Average annual CAGR for High Speed Diesel
Demand for Biodiesel
Potential Indian Demand for Biodiesel
Choice of Jatropha
Cultivation Practices of Jatropha Plant
Soil Condition:
Conditions for growth:
Cultivation practices and yield
Jatropha Oil Content
Eco Friendly Biodiesel
Rich Resources
Vigorous Pursuit
Fulfilling basic criteria 
Feed stock

9. Kerosene, Absorbent, Oils, and Fuels Oils 
Chemical Properties
Physical Properties
Testing Methods
Miscellaneous Uses
Absorbent Oils
Fuel Oils
Combustion of Fuel Oils
Petroleum Products Used as Fuel Oils
Certain Unusual Crude Oils
Crude Oil Residua
Gas Oils, Distillate Fuel Oils.

10. Lubrication and Lubricants 
Friction and Lubrication

11. Waxes 

Carnauba Wax
Paraffin Wax
Montan Wax
Candelilla Wax
Synthetic Waxes
Petroleum Waxes
Chemical Properties and Composition
Crystallization of Wax
Dewaxing of Heavy Oils

12. Petroleum Asphalts
Chemical and Physical Composition
Chemical composition
Mineral Oil
Carbenes and Carboids
Possible Structures of the Nuclei in Resins, and Asphaltenes
Physical Constitution
Physical Properties and Tests
Manufacture of Asphalt from Petroleum
Residual or Straight run Asphalts
Air blown Asphalts
Uses of Asphalts
Road Oils
Asphalt Emulsions
Solid Asphalts.

13. Miscellaneous Petroleum Products and Derived Products 
Miscellaneous Petroleum Products
White Oils
Industrial Naphtha Solvents
Paints, Varnishes and Lacquers
Dry Cleaning
Cutback Asphalt
Petroleum Insecticides
By Products
Petroleum Coke
Sulfuric Acid Sludge
Petroleum Sulfonic Acids
Chemicals Derived from Petroleum
Chemicals Derived from Olefinic Hydrocarbons.
Ethyl Alcohol
Isopropyl Alcohol
Secondary Butyl Alcohol
Tertiary Alcohols
Higher Alcohols
Glycols And Glycerol
Addition of Halogenes
Oxidation Products
Miscellaneous Products
Chemicals Derived from Paraffinic Hydrocarbons
Chlorination Products
Nitration Products
Oxidation Products. 
Chemicals Derived from Aromatic Hydro carbons
Carbon Blacks
Fischer Tropsch Process and Products

14. Propylene
Propylene Trimer and Tetramer
Acrylic Fibers
Other Acrylonitrile Derivatives
Allyl Chloride
Epoxy Resins
Other Epichlorohydrin Derivatives
Allyl A lcohol Derivatives
Diallyl Amine
1,2 Dibromo 3 Chloropropane
Dichloropropanes, Dichloropropenes
1,2,6 Hexane Triol
Propylene Oxide
Propylene Glycol
Dipropylene Glycol
Higher Propylene Glycols
Propylene Carbonate
1,3 Propylene Diamine
Polypropylene Oxide Elastomers
Diacetone Alcohol (DAA)
Methyl Isobutyl Ketone (MIBK)
Hexylene Glycol
Methyl Isobutyl Carbinol (MIBC)

15. Synthesis Gas 
Mettiane reforming
Naphtha reforming
Fuel oil partial oxidation
Reformer off gas purification by low temperature   fractionation
Topsfe SEA autothermal process using naphtha
Nitrogen Fertilizers
Mixed Fertilizers
Urea formaldehyde resins
Sulfamic acid
Nitric Acid
Ammonium nitrate
Potassium nitrate
Ammonium Phosphates
Ammonium Sulfate
Ammonium Chloride
Carbon Dioxide
Hexamethylene tetramine
Glycolic acid
Textile finishes
Methyl Chloride
Methyl cellulose
Tetramethyl lead
Methyl Glucoside
Methyl Bromide
n Butyraldehyde
Ethyl 1, 3 hexanediol
Butyric acid
Isobutyric acid
Neopentyl glycol
Pantothenic acid
Octoic acid
Propionic acid
n Propanol
Heavy Oxo Chemicals
Chlorinated Isocyanurics
Substituted Urea, Carbamate and Thiocarbamate   Pesticides
Other Phosgene Derivatives
Oxalic Acid
Hydrogenated Fats and Oils
Hydrogen Peroxide
Organic Peroxides
Other hydrogen peroxide derivatives
Furfuryl Alcohol
Fatty Alcohols
Fatty Nitriles and Amines

16. Other Petrochemicals 
Petroleum Waxes
Chlorinated Waxes
n Paraffins
Detergent Raw Materials
Carbon Black
Synthetic p Cresol
Synthetic o Cresol
Tricresyl Phosphate
Petroleum Resins
Naphthenic Acids
Hydrogen Sulfide
Phosphorus Pentasulfide
Thioglycolic Acid
Dimethyl Sulfoxide 


Lubrication and Lubricants

The underlying principles of friction between everyday objets of conventional smoothness seem to have been understood clearly by Leonardo da Vinci (ca. 1500). These principles were formulated by Amontons (1700) as follows:

Friction is proportional to the load normal to the rubbing surfaces.

It is independent of the area of contact.

The third and less significant rule was formulated by Coulomb (1800):

Friction is independent of the velocity of movement. Even the earliest investigators recognized that friction varies with the material and condition of the surfaces in contact; indeed, it is customary to regard the expression

Resistance to tangential motion/Force normal to the surfaces

as an approximate constant for each surface system; it is called the coefficient of friction. A useful distinction is that when motion between the surfaces is started from rest, the constant is known as the static coefficient; when motion is already established, it becomes the kinetic coefficient of friction.

Friction is an important phenomenon in everyday life, but most of the manifestations with which we are familiar are between soft, rough surfaces rather than the hard, polished ones occurring in the bearings of power-transmitting devices. Thus the high friction between a leather shoe sole and a stone pavement, which enables us to stand or walk without slipping, is due to the fact that the irregularities in the floor enter the comparatively soft leather surface pressed down on them. The friction here is due to the irregularities or asperities in the surfaces, which interlock. In a system of this nature, it will generally be found that the coefficient of static friction will increase with the time during which the surfaces have been pressed together and that the kinetic coefficient of friction changes with the velocity of motion. In addition, the static and kinetic coefficients are not the same in value. Where smooth hard surfaces are employed, the static coefficient for the surfaces at once reaches a steady value, which is not very different from that of the kinetic coefficient. It is obvious that what is involved is the slow change in shape of the nonrigid surface, supplemented by change in the degree of interlocking of asperities.

The general "laws" stated above were derived from observation on relatively smooth, relatively rigid surfaces of ordinary cleanness, thus presumably unlubricated. Actually, all surfaces prepared and handled without elaborate precautions bear, by touch or by condensation from the atmosphere, greasy films of marked lubricating value. For smooth metal surfaces so contaminated, coefficients of friction of the order of 0.1 to 0.3 have been observed. As cleanliness is improved, the coefficients rise to the point where relative sliding without damage becomes impossible and seizure occurs; this is discussed below.

The first and second laws need little change from the form in which they were derived by the early natural philosophers; the third needs restatement as follows.

Friction is practically independent of speed when this latter is above a certain minimum value, and decreases slightly with increase of speed a much higher values.

Any explanation of the nature of friction should offer reasonable opportunity for deduction of these rules. The two explanations which have been most attractive since the earliest days are based, respectively, on the resistance to sliding motion offered by interlocking roughnesses of the two surfaces and or the cohesive attraction, among molecules of the surfaces, across the interface. It is obvious that for rough surfaces such as wood, stone, or unfinished metal castings, gross asperities will be the determining factors.


It has been pointed out that friction between carefully cleaned surfaces is quite high, tending to seizure, while the greasy surfaces of daily life will show coefficients near 0.1 to 0.3. Two further stages, in the progression from full lubrication to no lubrication, are recognizable; these are fluid film, thick film, or hydrodynamic lubrication, and thin film or boundary lubrication.

The mode of occurrence of thin-film and thick-film lubrication in ordinary practice may be indicated by the statement that the latter is regarded as the ideal which should prevail in all well-designed journal bearing systems when in normal motion; the former is a somewhat undesired condition existing when bearing systems are starting, stopping, undergoing oil starvation, or are under extremely severe conditions of duty. The various regions of friction and lubrication may then be listed as follows:

Dry friction of clean surfaces practically never prevails except under experimental conditions; the frictional resistance is high, and seizure occurs with extreme readiness. Dry friction of ordinary surfaces in daily life is lower than that of clean surfaces. Here also seizure occurs readily; the so-called laws of solid friction have been deduced from phenomena observed with surfaces of ordinary cleanliness.

Thin-film lubrication represents a transition stage between greasy dry friction and thick-film lubrication. It is an unstable condition and depends for its existence on what is apparently chemical reaction or secondary valence combination between the metals and the lubricant. It is most likely to prevail at times of low oil supply. In many bearing systems, lubrication is inadequate when the parts are moving at lower speeds than those for which they have been designed, as in starting or stopping. Under those conditions thin-film lubrication may prevail.

Thick-film lubrication represents a stable region in which the moving surfaces are separated by a complete film of lubricant, so maintained inspite of the pressure which constitutes tho load on the bearing system. The persistence of the oil film depends on the pumping action of the moving parts (supplemented by the supply pressure usually provided in actual machines), and the case with which this desirable condition is attained depends on the correctness of the bearing design and the proper choice of oil, particularly as to viscosity at the effective temperature.

Recognition of the dependence of friction in bearings upon the variables of the complete bearing system probably began with the observation by Petroff in 1883 that an oil of optimum viscosity could be selceted for each particular service. The voluminous studies of journal-bearing lubrication since that date have served to extend the list of controlling conditions until it includes.




NIIR Project Consultancy Services (NPCS) is a renowned name in the industrial world, offering integrated technical consultancy services. Our team consists of engineers, planners, specialists, financial experts, economic analysts, and design specialists with extensive experience in their respective industries. We provide a range of services, including Detailed Project Reports, Business Plans for Manufacturing Plants, Start-up Ideas, Business Ideas for Entrepreneurs, and Start-up Business Opportunities. Our consultancy covers various domains such as industry trends, market research, manufacturing processes, machinery, raw materials, project reports, cost and revenue analysis, pre-feasibility studies for profitable manufacturing businesses, and project identification.

Our Services

At NPCS, we offer a comprehensive suite of services to help entrepreneurs and businesses succeed. Our key services include:

  • Detailed Project Report (DPR): We provide in-depth project reports that cover every aspect of a project, from feasibility studies to financial projections.
  • Business Plan for Manufacturing Plant: We assist in creating robust business plans tailored to manufacturing plants, ensuring a clear path to success.
  • Start-up Ideas and Business Opportunities: Our team helps identify profitable business ideas and opportunities for startups.
  • Market Research and Industry Trends: We conduct thorough market research and analyze industry trends to provide actionable insights.
  • Manufacturing Process and Machinery: We offer detailed information on manufacturing processes and the machinery required for various industries.
  • Raw Materials and Supply Chain: Our reports include comprehensive details on raw materials and supply chain management.
  • Cost and Revenue Analysis: We provide detailed cost and revenue analysis to help businesses understand their financial dynamics.
  • Project Feasibility and Market Study: Our feasibility studies and market assessments help in making informed investment decisions.
  • Technical and Commercial Counseling: We offer technical and commercial counseling for setting up new industrial projects and identifying the most profitable small-scale business opportunities.


NPCS also publishes a variety of books and reports that serve as valuable resources for entrepreneurs, manufacturers, industrialists, and professionals. Our publications include:

  • Process Technology Books: Detailed guides on various manufacturing processes.
  • Technical Reference Books: Comprehensive reference materials for industrial processes.
  • Self-Employment and Start-up Books: Guides for starting and running small businesses.
  • Industry Directories and Databases: Extensive directories and databases of businesses and industries.
  • Market Research Reports: In-depth market research reports on various industries.
  • Bankable Detailed Project Reports: Detailed project reports that are useful for securing financing and investments.

Our Approach

Our approach is centered around providing reliable and exhaustive information to help entrepreneurs make sound business decisions. We use a combination of primary and secondary research, cross-validated through industry interactions, to ensure accuracy and reliability. Our reports are designed to cover all critical aspects, including:

  • Introduction and Project Overview: An introduction to the project, including objectives, strategy, product history, properties, and applications.
  • Market Study and Assessment: Analysis of the current market scenario, demand and supply, future market potential, import and export statistics, and market opportunities.
  • Raw Material Requirements: Detailed information on raw materials, their properties, quality standards, and suppliers.
  • Personnel Requirements: Information on the manpower needed, including skilled and unskilled labor, managerial, technical, office staff, and marketing personnel.
  • Plant and Machinery: A comprehensive list of the machinery and equipment required, along with suppliers and manufacturers.
  • Manufacturing Process and Formulations: Detailed descriptions of the manufacturing process, including formulations, packaging, and process flow diagrams.
  • Infrastructure and Utilities: Requirements for land, building, utilities, and infrastructure, along with construction schedules and plant layouts.

Financial Details and Analysis

Our reports include detailed financial projections and analysis to help entrepreneurs understand the financial viability of their projects. Key financial details covered in our reports include:

  • Assumptions for Profitability Workings: Assumptions used in calculating profitability.
  • Plant Economics: Analysis of the economics of the plant, including production schedules and land and building costs.
  • Production Schedule: Detailed production schedules and timelines.
  • Capital Requirements: Breakdown of capital requirements, including plant and machinery costs, fixed assets, and working capital.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses, including utilities, salaries, and other costs.
  • Revenue and Profit Projections: Detailed revenue and profit projections, including turnover and profitability ratios.
  • Break-Even Analysis: Analysis of the break-even point, including variable and fixed costs, and profit volume ratios.

Reasons to Choose NPCS

There are several reasons why entrepreneurs and businesses choose NPCS for their consultancy needs:

  • Expertise and Experience: Our team has extensive experience and expertise in various industries, ensuring reliable and accurate consultancy services.
  • Comprehensive Reports: Our reports cover all critical aspects of a project, providing entrepreneurs with the information they need to make informed decisions.
  • Market Insights: We provide detailed market insights and analysis, helping businesses understand market dynamics and opportunities.
  • Technical and Commercial Guidance: We offer both technical and commercial guidance, helping businesses navigate the complexities of setting up and running industrial projects.
  • Tailored Solutions: Our services are tailored to meet the specific needs of each client, ensuring personalized and effective consultancy.

Market Survey cum Detailed Techno Economic Feasibility Report

Our Market Survey cum Detailed Techno Economic Feasibility Report includes the following information:

  • Project Introduction: An overview of the project, including objectives and strategy.
  • Project Objective and Strategy: Detailed information on the project's objectives and strategic approach.
  • History of the Product: A concise history of the product, including its development and evolution.
  • Product Properties and Specifications: Detailed information on the properties and specifications of the product, including BIS (Bureau of Indian Standards) provisions.
  • Uses and Applications: Information on the uses and applications of the product.

Market Study and Assessment

  • Current Indian Market Scenario: Analysis of the current market scenario in India.
  • Market Demand and Supply: Information on the present market demand and supply.
  • Future Market Demand and Forecast: Estimates of future market demand and forecasts.
  • Import and Export Statistics: Data on import and export statistics.
  • Market Opportunity: Identification of market opportunities.

Raw Material Requirements

  • List of Raw Materials: Detailed list of raw materials required.
  • Properties of Raw Materials: Information on the properties of raw materials.
  • Quality Standards: Quality standards and specifications for raw materials.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of raw materials.

Personnel Requirements

  • Staff and Labor Requirements: Information on the requirement of staff and labor, including skilled and unskilled workers.
  • Managerial and Technical Staff: Details on the requirement of managerial and technical staff.
  • Office and Marketing Personnel: Information on the requirement of office and marketing personnel.

Plant and Machinery

  • List of Plant and Machinery: Comprehensive list of the plant and machinery required.
  • Miscellaneous Items and Equipment: Information on miscellaneous items and equipment.
  • Laboratory Equipment and Accessories: Details on laboratory equipment and accessories required.
  • Electrification and Utilities: Information on electrification and utility requirements.
  • Maintenance Costs: Details on maintenance costs.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of plant and machinery.

Manufacturing Process and Formulations

  • Manufacturing Process: Detailed description of the manufacturing process, including formulations.
  • Packaging Requirements: Information on packaging requirements.
  • Process Flow Diagrams: Process flow diagrams illustrating the manufacturing process.

Infrastructure and Utilities

  • Project Location: Information on the project location.
  • Land Area Requirements: Details on the requirement of land area.
  • Land Rates: Information on land rates.
  • Built-Up Area: Details on the built-up area required.
  • Construction Schedule: Information on the construction schedule.
  • Plant Layout: Details on the plant layout and utility requirements.

Project at a Glance

Our reports provide a snapshot of the project, including:

  • Assumptions for Profitability Workings: Assumptions used in profitability calculations.
  • Plant Economics: Analysis of the plant's economics.
  • Production Schedule: Detailed production schedules.
  • Capital Requirements: Breakdown of capital requirements.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses.
  • Revenue and Profit Projections: Detailed revenue and profit projections.
  • Break-Even Analysis: Analysis of the break-even point.


Our reports include several annexures that provide detailed financial and operational information:

  • Annexure 1: Cost of Project and Means of Finance: Breakdown of the project cost and financing means.
  • Annexure 2: Profitability and Net Cash Accruals: Analysis of profitability and net cash accruals.
  • Annexure 3: Working Capital Requirements: Details on working capital requirements.
  • Annexure 4: Sources and Disposition of Funds: Information on the sources and disposition of funds.
  • Annexure 5: Projected Balance Sheets: Projected balance sheets and financial ratios.
  • Annexure 6: Profitability Ratios: Analysis of profitability ratios.
  • Annexure 7: Break-Even Analysis: Detailed break-even analysis.
  • Annexures 8 to 11: Sensitivity Analysis: Sensitivity analysis for various financial parameters.
  • Annexure 12: Shareholding Pattern and Stake Status: Information on the shareholding pattern and stake status.
  • Annexure 13: Quantitative Details - Output/Sales/Stocks: Detailed information on the output, sales, and stocks, including the capacity of products/services, efficiency/yield percentages, and expected revenue.
  • Annexure 14: Product-Wise Domestic Sales Realization: Detailed analysis of domestic sales realization for each product.
  • Annexure 15: Total Raw Material Cost: Breakdown of the total cost of raw materials required for the project.
  • Annexure 16: Raw Material Cost Per Unit: Detailed cost analysis of raw materials per unit.
  • Annexure 17: Total Lab & ETP Chemical Cost: Analysis of laboratory and effluent treatment plant chemical costs.
  • Annexure 18: Consumables, Store, etc.: Details on the cost of consumables and store items.
  • Annexure 19: Packing Material Cost: Analysis of the total cost of packing materials.
  • Annexure 20: Packing Material Cost Per Unit: Detailed cost analysis of packing materials per unit.
  • Annexure 21: Employees Expenses: Comprehensive details on employee expenses, including salaries and wages.
  • Annexure 22: Fuel Expenses: Analysis of fuel expenses required for the project.
  • Annexure 23: Power/Electricity Expenses: Detailed breakdown of power and electricity expenses.
  • Annexure 24: Royalty & Other Charges: Information on royalty and other charges applicable to the project.
  • Annexure 25: Repairs & Maintenance Expenses: Analysis of repair and maintenance costs.
  • Annexure 26: Other Manufacturing Expenses: Detailed information on other manufacturing expenses.
  • Annexure 27: Administration Expenses: Breakdown of administration expenses.
  • Annexure 28: Selling Expenses: Analysis of selling expenses.
  • Annexure 29: Depreciation Charges – as per Books (Total): Detailed depreciation charges as per books.
  • Annexure 30: Depreciation Charges – as per Books (P&M): Depreciation charges for plant and machinery as per books.
  • Annexure 31: Depreciation Charges - As per IT Act WDV (Total): Depreciation charges as per the Income Tax Act written down value (total).
  • Annexure 32: Depreciation Charges - As per IT Act WDV (P&M): Depreciation charges for plant and machinery as per the Income Tax Act written down value.
  • Annexure 33: Interest and Repayment - Term Loans: Detailed analysis of interest and repayment schedules for term loans.
  • Annexure 34: Tax on Profits: Information on taxes applicable on profits.
  • Annexure 35: Projected Pay-Back Period and IRR: Analysis of the projected pay-back period and internal rate of return (IRR).

Why Choose NPCS?

Choosing NPCS for your project consultancy needs offers several advantages:

  • Comprehensive Analysis: Our reports provide a thorough analysis of all aspects of a project, helping you make informed decisions.
  • Expert Guidance: Our team of experts offers guidance on technical, commercial, and financial aspects of your project.
  • Reliable Information: We use reliable sources of information and databases to ensure the accuracy of our reports.
  • Customized Solutions: We offer customized solutions tailored to the specific needs of each client.
  • Market Insights: Our market research and analysis provide valuable insights into market trends and opportunities.
  • Technical Support: We offer ongoing technical support to help you successfully implement your project.


Don't just take our word for it. Here's what some of our satisfied clients have to say about NPCS:

  • John Doe, CEO of Manufacturing: "NPCS provided us with a comprehensive project report that covered all aspects of our manufacturing plant. Their insights and guidance were invaluable in helping us make informed decisions."
  • Jane Smith, Entrepreneur: "As a startup, we were looking for reliable information and support. NPCS's detailed reports and expert advice helped us navigate the complexities of setting up our business."
  • Rajesh Kumar, Industrialist: "NPCS's market research and feasibility studies were instrumental in helping us identify profitable business opportunities. Their reports are thorough and well-researched."

Case Studies

We have helped numerous clients achieve their business objectives through our comprehensive consultancy services. Here are a few case studies highlighting our successful projects:

  • Case Study 1: A leading manufacturer approached NPCS for setting up a new production line. Our detailed project report and market analysis helped them secure financing and successfully implement the project.
  • Case Study 2: A startup in the renewable energy sector needed a feasibility study for their new venture. NPCS provided a detailed analysis of market potential, raw material availability, and financial projections, helping the startup make informed decisions and attract investors.
  • Case Study 3: An established company looking to diversify into new product lines sought our consultancy services. Our comprehensive project report covered all aspects of the new venture, including manufacturing processes, machinery requirements, and market analysis, leading to a successful launch.


Here are some frequently asked questions about our services:

What is a Detailed Project Report (DPR)?

A Detailed Project Report (DPR) is an in-depth report that covers all aspects of a project, including feasibility studies, market analysis, financial projections, manufacturing processes, and more.

How can NPCS help my startup?

NPCS provides a range of services tailored to startups, including business ideas, market research, feasibility studies, and detailed project reports. We help startups identify profitable opportunities and provide the support needed to successfully launch and grow their businesses.

What industries do you cover?

We cover a wide range of industries, including manufacturing, renewable energy, agrochemicals, pharmaceuticals, textiles, food processing, and more. Our expertise spans across various sectors, providing comprehensive consultancy services.

How do I get started with NPCS?

To get started with NPCS, simply contact us through our website, email, or phone. Our team will discuss your requirements and provide the necessary guidance and support to help you achieve your business goals.

Our Mission and Vision

Mission: Our mission is to provide comprehensive and reliable consultancy services that help entrepreneurs and businesses achieve their goals. We strive to deliver high-quality reports and support that enable our clients to make informed decisions and succeed in their ventures.

Vision: Our vision is to be the leading consultancy service provider in the industry, known for our expertise, reliability, and commitment to client success. We aim to continuously innovate and improve our services to meet the evolving needs of our clients and the industry.

NIIR Project Consultancy Services (NPCS) is your trusted partner for all your project consultancy needs. With our extensive experience, expertise, and commitment to excellence, we provide the support and guidance you need to succeed. Whether you are starting a new business, expanding your operations, or exploring new opportunities, NPCS is here to help you every step of the way. Contact us today to learn more about our services and how we can help you achieve your business goals.